
Filter Design Toolbox™ 4
User’s Guide

How to Contact The MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.
Filter Design Toolbox™ User’s Guide
© COPYRIGHT 2000–2008 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History
March 2000 Online only New for Version 1.0
September 2000 First printing Revised for Version 2.0 (Release 12)
June 2001 Online only Revised for Version 2.1 (Release 12.1)
July 2002 Online only Revised for Version 2.2 (Release 13)
November 2002 Online only Revised for Version 2.5
June 2004 Online only Revised for Version 3.0 (Release 14)
October 2004 Online only Revised for Version 3.1 (Release 14SP1)
March 2005 Online only Revised for Version 3.2 (Release 14SP2)
September 2005 Online only Revised for Version 3.3 (Release 14SP3)
March 2006 Online only Revised for Version 3.4 (Release 2006a)
September 2006 Online only Revised for Version 4.0 (Release 2006b)
March 2007 Online only Revised for Version 4.1 (Release 2007a)
September 2007 Online only Revised for Version 4.2 (Release 2007b)
March 2008 Online only Revised for Version 4.3 (Release 2008a)
October 2008 Online only Revised for Version 4.4 (Release 2008b)

Contents

Designing a Filter — Process Overview

1
Process Flow Diagram and Filter Design
Methodology . 1-2
Exploring the Process Flow Diagram 1-2
Selecting a Response . 1-4
Selecting a Specification . 1-4
Selecting an Algorithm . 1-6
Customizing the Algorithm . 1-8
Designing the Filter . 1-8
Design Analysis . 1-9
Realize or Apply the Filter to Input Data 1-10

Using the Filterbuilder GUI

2
The Graphical Interface to Fdesign 2-2
Introduction to Filterbuilder . 2-2
Filterbuilder Design Process . 2-3
Select a Response . 2-3
Select a Specification . 2-6
Select an Algorithm . 2-6
Customize the Algorithm . 2-7
Analyze the Design . 2-9
Realize or Apply the Filter to Input Data 2-9

Designing a FIR Filter Using filterbuilder 2-11
FIR Filter Design . 2-11

v

Digital Frequency Transformations

3
Details and Methodology . 3-2
Overview of Transformations . 3-2
Selecting Features Subject to Transformation 3-6
Mapping from Prototype Filter to Target Filter 3-8
Summary of Frequency Transformations 3-10

Frequency Transformations for Real Filters 3-11
Overview . 3-11
Real Frequency Shift . 3-11
Real Lowpass to Real Lowpass . 3-13
Real Lowpass to Real Highpass . 3-15
Real Lowpass to Real Bandpass . 3-17
Real Lowpass to Real Bandstop . 3-19
Real Lowpass to Real Multiband . 3-21
Real Lowpass to Real Multipoint . 3-23

Frequency Transformations for Complex Filters 3-26
Overview . 3-26
Complex Frequency Shift . 3-26
Real Lowpass to Complex Bandpass 3-28
Real Lowpass to Complex Bandstop 3-30
Real Lowpass to Complex Multiband 3-32
Real Lowpass to Complex Multipoint 3-34
Complex Bandpass to Complex Bandpass 3-36

Using FDATool with Filter Design Toolbox
Software

4
Designing Advanced Filters in FDATool 4-2
Overview of FDATool Features . 4-2
Using FDATool with Filter Design Toolbox Software 4-3
Example — Design a Notch Filter . 4-3

Switching FDATool to Quantization Mode 4-6

vi Contents

Quantizing Filters in the Filter Design and Analysis
Tool . 4-9
Setting Quantization Parameters . 4-9
Coefficients Options . 4-10
Input/Output Options . 4-12
Filter Internals Options . 4-14
Filter Internals Options for CIC Filters 4-17

Analyzing Filters with a Noise-Based Method 4-20
Using the Magnitude Response Estimate Method 4-20
Comparing the Estimated and Theoretical Magnitude
Responses . 4-25

Choosing Quantized Filter Structures 4-25
Converting the Structure of a Quantized Filter 4-25
Converting Filters to Second-Order Sections Form 4-26

Scaling Second-Order Section Filters 4-28
Using the Reordering and Scaling Second-Order Sections
Dialog Box . 4-28

Example — Scale an SOS Filter . 4-30

Reordering the Sections of Second-Order Section
Filters . 4-36
Switching FDATool to Reorder Filters 4-36

Viewing SOS Filter Sections . 4-43
Using the SOS View Dialog Box . 4-43
Example — View the Sections of SOS Filters 4-46

Importing and Exporting Quantized Filters 4-50
Overview and Structures . 4-50
Example — Import Quantized Filters 4-51
To Export Quantized Filters . 4-52

Importing XILINX Coefficient (.COE) Files 4-55
Example — Import XILINX .COE Files 4-55

Transforming Filters . 4-56
FDATool Filter Transformation Capabilities 4-56
Original Filter Type . 4-57
Frequency Point to Transform . 4-61

vii

Transformed Filter Type . 4-62
Specify Desired Frequency Location 4-62

Designing Multirate Filters in FDATool 4-67
Introduction . 4-67
Switching FDATool to Multirate Filter Design Mode 4-67
Controls on the Multirate Design Panel 4-68
Quantizing Multirate Filters . 4-79
Exporting the Individual Phase Coefficients of a Polyphase
Filter to the Workspace . 4-81

Realizing Filters as Simulink Subsystem Blocks 4-84
Introduction . 4-84
About the Realize Model Panel in FDATool 4-84

Getting Help for FDATool . 4-89
The What’s This? Option . 4-89
Additional Help for FDATool . 4-89

Adaptive Filters

5
Introducing Adaptive Filtering . 5-2

Overview of Adaptive Filters and Applications 5-4
Adaptive Filtering Methodology . 5-4
Choosing an Adaptive Filter . 5-6
System Identification . 5-7
Inverse System Identification . 5-8
Noise or Interference Cancellation . 5-9
Prediction . 5-9

Adaptive Filters in Filter Design Toolbox Software . . . 5-11
Overview of Adaptive Filtering in Filter Design Toolbox
Software . 5-11

Algorithms . 5-11
Using Adaptive Filter Objects . 5-14

viii Contents

Examples of Adaptive Filters That Use LMS
Algorithms . 5-15
LMS Methods Available in Filter Design Toolbox
Software . 5-15

adaptfilt.lms Example — System Identification 5-17
adaptfilt.nlms Example — System Identification 5-20
adaptfilt.sd Example — Noise Cancellation 5-23
adaptfilt.se Example — Noise Cancellation 5-27
adaptfilt.ss Example — Noise Cancellation 5-32

Example of Adaptive Filter That Uses RLS
Algorithm . 5-36
Introduction and Comparison to the LMS Algorithm 5-36
adaptfilt.rls Example — Inverse System Identification . . . 5-37

Selected Bibliography . 5-41

Using Integers and FIR Filters with Filter
Design Toolbox

6
Review of Fixed-Point Numbers . 6-2
Terminology of Fixed-Point Numbers 6-2

Integers and Fixed-Point Filters . 6-5
Example Filter Coefficients . 6-5
Building the FIR Filter . 6-5
Setting Filter Parameters to Work with Integers 6-7
Creating a Test Signal for the Filter 6-7
Filtering the Test Signal . 6-8
Truncating the Output WordLength 6-10
Scaling the Output . 6-12

Using the set2int Method . 6-17
Setting Filter Parameters to Work with Integers 6-17
Reinterpreting the Output . 6-18

ix

Reference for the Properties of Filter Objects

7
Fixed-Point Filter Properties . 7-2
Overview of Fixed-Point Filters . 7-2
Fixed-Point Objects and Filters . 7-2
Summary — Fixed-Point Filter Properties 7-5
Property Details for Fixed-Point Filters 7-19

Adaptive Filter Properties . 7-103
Property Summaries . 7-103
Property Details for Adaptive Filter Properties 7-108

Multirate Filter Properties . 7-116
Property Summaries . 7-116
Property Details for Multirate Filter Properties 7-121

Bibliography

A
Advanced Filters . A-1

Adaptive Filters . A-2

Multirate Filters . A-2

Frequency Transformations . A-3

Examples

B
Using FDATool . B-2

x Contents

Adaptive Filters . B-2

Index

xi

xii Contents

1

Designing a Filter —
Process Overview

1 Designing a Filter — Process Overview

Process Flow Diagram and Filter Design Methodology

In this section...

“Exploring the Process Flow Diagram” on page 1-2
“Selecting a Response” on page 1-4
“Selecting a Specification” on page 1-4
“Selecting an Algorithm” on page 1-6
“Customizing the Algorithm” on page 1-8
“Designing the Filter” on page 1-8
“Design Analysis” on page 1-9
“Realize or Apply the Filter to Input Data” on page 1-10

Exploring the Process Flow Diagram
The process flow diagram shown in the following figure lists the steps and
shows the order of the filter design process.

1-2

Process Flow Diagram and Filter Design Methodology

The first four steps of the filter design process relate to the filter Specifications
Object, while the last two steps involve the filter Implementation Object. Both
of these objects are discussed in more detail in the following sections. Step 5
- the design of the filter, is the transition step from the filter Specifications
Object to the Implementation object. The analysis and verification step is

1-3

1 Designing a Filter — Process Overview

completely optional. It provides methods for the filter designer to ensure that
the filter complies with all design criteria. Depending on the results of this
verification, you can loop back to steps 3 and 4, to either choose a different
algorithm, or to customize the current one. You may also wish to go back to
steps 3 or 4 after you filter the input data with the designed filter (step 7), and
find that you wish to tweak the filter or change it further.

The diagram shows the help command for each step. Enter the help line
at the MATLAB® command prompt to receive instructions and further
documentation links for the particular step. Not all of the steps have to be
executed explicitly. For example, you could go from step 1 directly to step
5, and the interim three steps are done for you by Filter Design Toolbox™
software.

The following are the details for each of the steps shown above.

Selecting a Response
If you type:

help fdesign/responses

at the MATLAB command prompt, you see a complete list of all possible filter
responses available in Filter Design Toolbox software. After you choose a
response, say bandpass, you start the design of the Specifications Object by
typing the following:

d = fdesign.bandpass

This step cannot be skipped, nor is it automatically completed for you by
Filter Design Toolbox software. You must select a response to initiate the
filter design process.

Selecting a Specification
A specification is an array of design parameters for a given filter. The
specification itself is a property of the Specifications Object.

1-4

Process Flow Diagram and Filter Design Methodology

Note A specification is not the same as the Specifications Object, rather a
Specifications Object contains a specification as one of its properties.

When you select a filter response, there is a number of different specifications
available, each containing a different combination of design parameters.
In the following example, first set the filter response, then ask for the
specifications listing.

>> d = fdesign.bandpass; % step 1 - choose the response
>> set (d, 'specification')

ans =

'Fst1,Fp1,Fp2,Fst2,Ast1,Ap,Ast2'
'N,F3dB1,F3dB2'
'N,F3dB1,F3dB2,Ap'
'N,F3dB1,F3dB2,Ast'
'N,F3dB1,F3dB2,Ast1,Ap,Ast2'
'N,F3dB1,F3dB2,BWp'
'N,F3dB1,F3dB2,BWst'
'N,Fc1,Fc2'
'N,Fp1,Fp2,Ap'
'N,Fp1,Fp2,Ast1,Ap,Ast2'
'N,Fst1,Fp1,Fp2,Fst2'
'N,Fst1,Fp1,Fp2,Fst2,Ap'
'N,Fst1,Fst2,Ast'
'Nb,Na,Fst1,Fp1,Fp2,Fst2'

>> d = fdesign.decimator; % step 1 - choose the response
<<% get a list of available specifications
>> set (d, 'specification')
ans =

'TW,Ast'
'N'
'N,Ast'
'N,TW'

1-5

1 Designing a Filter — Process Overview

After you select the specification that includes all of the given filter’s design
parameters, you can set it as follows:

>> d = fdesign.lowpass; % step 1
>> % step 2: get a list of available specifications
>> set (d, 'specification')
ans =

'Fp,Fst,Ap,Ast'
'N,F3dB'
'N,F3dB,Ap'
'N,F3dB,Ap,Ast'
'N,F3dB,Ast'
'N,F3dB,Fst'
'N,Fc'
'N,Fc,Ap,Ast'
'N,Fp,Ap'
'N,Fp,Ap,Ast'
'N,Fp,F3dB'
'N,Fp,Fst'
'N,Fp,Fst,Ap'
'N,Fp,Fst,Ast'
'N,Fst,Ap,Ast'
'N,Fst,Ast'
'Nb,Na,Fp,Fst'

>> %step 2: set the required specification
>> set (d, 'specification', 'N,Fc')

If you do not perform this step explicitly, Filter Design Toolbox software
selects a default specification for the response you chose in “Selecting a
Response” on page 1-4, and even provides default values for all design
parameters included in the specification.

Selecting an Algorithm
The availability of algorithms depends on both the chosen filter response
and the design parameters. In other words, for the same lowpass filter,
changing the specification string also changes the available algorithms. In
the following example, for a lowpass filter and a specification of 'N, Fc',

1-6

Process Flow Diagram and Filter Design Methodology

only one algorithm is available—window. However, for a specification of
'Fp,Fst,Ap,Ast', a number of algorithms is available.

>> %step 2: set the required specification
>> set (d, 'specification', 'N,Fc')
>> designmethods (d) %step3: get available algorithms

Design Methods for class fdesign.lowpass (N,Fc):

window

>> %step2: set a different specification
>> set (d, 'specification', 'Fp,Fst,Ap,Ast')
>> designmethods (d) %step3: get available algorithms

Design Methods for class fdesign.lowpass (Fp,Fst,Ap,Ast):

butter
cheby1
cheby2
ellip
equiripple
ifir
kaiserwin
multistage

To apply the chosen algorithm, (the Butterworth algorithm in this example),
evaluate the following:

>> f = design(d, 'butter');

The preceding code actually creates the filter, where f is the filter
Implementation Object. This concept is discussed further in the next step.

If you do not perform this step explicitly, Filter Design Toolbox software
automatically selects the optimum algorithm for the chosen response and
specification.

1-7

1 Designing a Filter — Process Overview

Customizing the Algorithm
The customization options available for any given algorithm depend not only
on the algorithm itself, selected in “Selecting an Algorithm” on page 1-6, but
also on the specification selected in “Selecting a Specification” on page 1-4. To
explore all the available options, type the following at the MATLAB command
prompt:

help (d, 'algorithm-name')

where d is the Specifications Object, and algorithm-name is the name of the
algorithm in quotes, such as 'butter' or 'cheby1'.

The application of these customization options takes place while “Designing
the Filter” on page 1-8 because these options are the properties of the filter
Implementation Object, not the Specification Object.

If you do not perform this step explicitly, Filter Design Toolbox software
automatically selects the optimal algorithm structure as well as other options.

Designing the Filter
This next task introduces a new object, the Filter Object, or dfilt. To create
a filter, use the design command:

>> % design filter w/o specifying the algorithm
>> f = design(d);

where f is the Filter Object also referred to sometimes as dfilt, and d
is the Specifications Object. This code creates a filter without specifying
the algorithm. When the algorithm is not specified, Filter Design Toolbox
software selects the best available one.

To apply the algorithm chosen in “Selecting an Algorithm” on page 1-6, use
the same design command, but specify the Butterworth algorithm as follows:

>> f = design(d, 'butter');

where f is the new Filter Object, and d is the Specifications Object.

To obtain help and see all the available options, type:

1-8

Process Flow Diagram and Filter Design Methodology

>> help fdesign/design

This help command describes not only the options for the design command
itself, but also options that pertain to the method or the algorithm. If you
are customizing the algorithm, you apply these options in this step. In the
following example, you design a bandpass filter, and then modify the filter
structure:

>> f = design(d, 'butter', 'filterstructure', 'df2sos')

f =

FilterStructure: 'Direct-Form II, Second-Order Sections'
Arithmetic: 'double'
sosMatrix: [7x6 double]

ScaleValues: [8x1 double]
PersistentMemory: false

The filter design step, just like the first task of choosing a response, must be
performed explicitly. Filter Design Toolbox software does not create a filter
unless you specifically tell it to do so.

Design Analysis
After the filter is designed you may wish to analyze it to determine if the
filter satisfies the design criteria. In Filter Design Toolbox software, analysis
is broken into three main sections:

• Frequency domain analysis — Includes magnitude response, group delay,
and poll zero

• Time domain analysis — Includes impulse and step response

• Implementation analysis — Includes quantization noise and cost

To display help for analysis of a discrete-time filter, type:

>> help dfilt/analysis

To display help for analysis of a multirate filter, type:

>> help mfilt/functions

1-9

1 Designing a Filter — Process Overview

To display help for analysis of a farrow filter, type:

>> help farrow/functions

To analyze your filter, you must explicitly perform this step.

Realize or Apply the Filter to Input Data
After the filter is designed and optimized, it can be used to filter actual input
data. The basic filter command takes input data x, filters it through the Filter
Object, and produces output y:

>> y = filter (FilterObj, x)

This step is never automatically performed for you by Filter Design Toolbox
software. To filter your data, you must explicitly execute this step. To
understand how the filtering commands work, type:

>> help dfilt/filter

Note If you have Simulink®, you have the option of exporting this filter
to a Simulink block using the realizemdl command. To get help on this
command, type:

>> help realizemdl

1-10

2

Using the Filterbuilder GUI

• “The Graphical Interface to Fdesign” on page 2-2

• “Designing a FIR Filter Using filterbuilder” on page 2-11

2 Using the Filterbuilder GUI

The Graphical Interface to Fdesign

In this section...

“Introduction to Filterbuilder” on page 2-2
“Filterbuilder Design Process” on page 2-3
“Select a Response” on page 2-3
“Select a Specification” on page 2-6
“Select an Algorithm” on page 2-6
“Customize the Algorithm” on page 2-7
“Analyze the Design” on page 2-9
“Realize or Apply the Filter to Input Data” on page 2-9

Introduction to Filterbuilder
The filterbuilder function provides a graphical interface to the fdesign
object-object oriented filter design paradigm and is intended to reduce
development time during the filter design process. filterbuilder uses a
specification-centered approach to find the best algorithm for the desired
response.

The filterbuilder GUI contains many features that are not available in
FDATool. For instance:

• Mulitrate/multistage FIR filters for efficient narrow-transition band
designs

• Automatically generated optimal multistage interpolators and decimators

• Optimal multistage Nyquist filters

• IIR halfband designs (including IIR filters with approximately linear phase)

• CIC designs (including CIC compensators)

• Farrow filter designs

• Wave digital filter designs

• Arbitrary magnitude and phase designs

2-2

The Graphical Interface to Fdesign

Filterbuilder Design Process
The design process when using filterbuilder is similar to the process
outlined in the section titledChapter 1, “Designing a Filter — Process
Overview” in the Getting Started guide. The idea is to choose the constraints
and specifications of the filter, and to use those as a starting point in the
design. Postponing the choice of algorithm for the filter allows the best design
method to be determined automatically, based upon the desired performance
criteria. The following are the details of each of the steps for designing a
filter with filterbuilder.

Select a Response
When you open the filterbuilder tool by typing:

filterbuilder

at the MATLAB command prompt, the Response Selection dialog box
appears, listing all possible filter responses available in Filter Design Toolbox
software.

2-3

2 Using the Filterbuilder GUI

Note This step cannot be skipped because it is not automatically completed
for you by Filter Design Toolbox software. You must select a response to
initiate the filter design process.

After you choose a response, say bandpass, you start the design of the
Specifications Object, and the Bandpass Design dialog box appears.
This dialog box contains a Main pane, a Data Types pane and a Code
Generation pane. The specifications of your filter are generally set in the
Main pane of the dialog box.

The Data Types pane provides settings for precision and data types, and the
Code Generation pane contains options for various implementations of the
completed filter design. More information about the Data Types and Code
Generation panes can be found in the section titled “Filterbuilder Dialog
Box” in the Filter Design Toolbox Reference Guide.

For the initial design of your filter, you will mostly use theMain pane.

2-4

The Graphical Interface to Fdesign

The Bandpass Design dialog box contains all the parameters you need to
determine the specifications of a bandpass filter. The parameters listed in
the Main pane depend upon the type of filter you are designing. However,
no matter what type of filter you have chosen in the Response Selection
dialog box, the filter design dialog box contains the Main, Data Types, and
Code Generation panes.

2-5

2 Using the Filterbuilder GUI

Select a Specification
To choose the specification for the bandpass filter, you can begin by selecting
an Impulse Response, Order Mode, and Filter Type in the Filter
Specifications frame of the Main Pane. You can further specify the
response of your filter by setting frequency and magnitude specifications in
the appropriate frames on the Main Pane.

Note Frequency, Magnitude, and Algorithm specifications are
interdependent and may change based upon your Filter Specifications
selections. When choosing specifications for your filter, select your Filter
Specifications first and work your way down the dialog box- this approach
ensures that the best settings for dependent specifications display as available
in the dialog box.

Select an Algorithm
The algorithms available for your filter depend upon the filter response and
design parameters you have selected in the previous steps. For example, in the
case of a bandpass filter, if the impulse response selected is IIR and the Order
Mode field is set toMinimum, the design methods available is Butterworth,
Chebyshev type I or II, or Elliptic, whereas if the Order Mode field is set to
Specify, the design method available is IIR least p-norm.

2-6

The Graphical Interface to Fdesign

Customize the Algorithm
By expanding the Design options section of the Algorithm frame, you
can further customize the algorithm specified. The options available will
depend upon the algorithm and settings that have already been selected in
the dialog box. In the case of a bandpass IIR filter using the Butterworth

2-7

2 Using the Filterbuilder GUI

method, design options such as Match Exactly are available, as shown in
the following figure.

2-8

The Graphical Interface to Fdesign

Analyze the Design
To analyze the filter response, click on the View Filter Response button. The
Filter Visualization Tool opens displaying the magnitude plot of the filter
response.

Realize or Apply the Filter to Input Data
When you have achieved the desired filter response through design iterations
and analysis using the Filter Visualization Tool, apply the filter to the
input data. Again, this step is never automatically performed for you by Filter
Design Toolbox software. To filter your data, you must explicitly execute
this step. In the Filter Visualization Tool, click OK and Filter Design
Toolbox software creates the filter object with the name specified in the Save
variable as field and exports it to the MATLAB workspace.

The filter is then ready to be used to filter actual input data. The basic filter
command takes input data x, filters it through the Filter Object, and produces
output y:

>> y = filter (FilterObj, x)

To understand how the filtering commands work, type:

>> help dfilt/filter

2-9

2 Using the Filterbuilder GUI

Tip If you have Simulink, you have the option of exporting this filter to
a Simulink block using the realizemdl command. To get help on this
command, type:

>> help realizemdl

2-10

Designing a FIR Filter Using filterbuilder

Designing a FIR Filter Using filterbuilder

FIR Filter Design

Example – Using Filterbuilder to Design a Finite Impulse Response
(FIR) Filter
To design a lowpass FIR filter using filterbuilder:

1 Open the Filterbuilder GUI by typing the following at the MATLAB prompt:

filterbuilder

The Response Selection dialog box appears. In this dialog box, you can
select from a list of filter response types. Select Lowpass in the list box.

2 Hit the OK button. The Lowpass Design dialog box opens. Here you
can specify the writable parameters of the Lowpass filter object. The
components of the Main frame of this dialog box are described in the
section titled “Lowpass Filter Design Dialog Box — Main Pane”. In the
dialog box, make the following changes:

• Enter a Fpass value of 0.55.

• Enter a Fstop value of 0.65.

2-11

2 Using the Filterbuilder GUI

3 Click Apply, and the following message appears at the MATLAB prompt:

The variable 'Hlp' has been exported to the command window.

2-12

Designing a FIR Filter Using filterbuilder

4 To check your design, click View Filter Response. The Filter
Visualization tool appears, showing a plot of the magnitude response of
the filter.

You can change the design and click Apply, followed by View Filter
Response, as many times as needed until your design specifications are
met.

2-13

2 Using the Filterbuilder GUI

2-14

3

Digital Frequency
Transformations

• “Details and Methodology” on page 3-2

• “Frequency Transformations for Real Filters” on page 3-11

• “Frequency Transformations for Complex Filters” on page 3-26

3 Digital Frequency Transformations

Details and Methodology

In this section...

“Overview of Transformations” on page 3-2
“Selecting Features Subject to Transformation” on page 3-6
“Mapping from Prototype Filter to Target Filter” on page 3-8
“Summary of Frequency Transformations” on page 3-10

Overview of Transformations
Converting existing FIR or IIR filter designs to a modified IIR form is often
done using allpass frequency transformations. Although the resulting designs
can be considerably more expensive in terms of dimensionality than the
prototype (original) filter, their ease of use in fixed or variable applications is
a big advantage.

The general idea of the frequency transformation is to take an existing
prototype filter and produce another filter from it that retains some of the
characteristics of the prototype, in the frequency domain. Transformation
functions achieve this by replacing each delaying element of the prototype
filter with an allpass filter carefully designed to have a prescribed phase
characteristic for achieving the modifications requested by the designer.

The basic form of mapping commonly used is

The HA(z) is an Nth-order allpass mapping filter given by

3-2

Details and Methodology

where

Ho(z) — Transfer function of the prototype filter

HA(z)— Transfer function of the allpass mapping filter

HT(z) — Transfer function of the target filter

Let’s look at a simple example of the transformation given by

The target filter has its poles and zeroes flipped across the origin of the real
and imaginary axes. For the real filter prototype, it gives a mirror effect
against 0.5, which means that lowpass Ho(z) gives rise to a real highpass
HT(z). This is shown in the following figure for the prototype filter designed
as a third-order halfband elliptic filter.

3-3

3 Digital Frequency Transformations

0 0.2 0.4 0.6 0.8 1
−60

−50

−40

−30

−20

−10

0
Prototype filter

|H
(ω

)|
 in

 d
B

Normalized Frequency (×π rad/sample)
0 0.2 0.4 0.6 0.8 1

−60

−50

−40

−30

−20

−10

0
Target filter

|H
(ω

)|
 in

 d
B

Normalized Frequency (×π rad/sample)

Prototype filter Pole−Zero plot Target filter Pole−Zero plot

Example of a Simple Mirror Transformation

The choice of an allpass filter to provide the frequency mapping is necessary
to provide the frequency translation of the prototype filter frequency response
to the target filter by changing the frequency position of the features from the
prototype filter without affecting the overall shape of the filter response.

The phase response of the mapping filter normalized to π can be interpreted
as a translation function:

The graphical interpretation of the frequency transformation is shown in the
figure below. The complex multiband transformation takes a real lowpass
filter and converts it into a number of passbands around the unit circle.

3-4

Details and Methodology

Graphical Interpretation of the Mapping Process

Most of the frequency transformations are based on the second-order allpass
mapping filter:

The two degrees of freedom provided by α1 and α2 choices are not fully used
by the usual restrictive set of “flat-top” classical mappings like lowpass to
bandpass. Instead, any two transfer function features can be migrated to
(almost) any two other frequency locations if α1 and α2 are chosen so as to keep
the poles of HA(z) strictly outside the unit circle (since HA(z) is substituted
for z in the prototype transfer function). Moreover, as first pointed out
by Constantinides, the selection of the outside sign influences whether the
original feature at zero can be moved (the minus sign, a condition known

3-5

3 Digital Frequency Transformations

as “DC mobility”) or whether the Nyquist frequency can be migrated (the
“Nyquist mobility” case arising when the leading sign is positive).

All the transformations forming the package are explained in the next
sections of the tutorial. They are separated into those operating on real
filters and those generating or working with complex filters. The choice of
transformation ranges from standard Constantinides first and second-order
ones [1][2] up to the real multiband filter by Mullis and Franchitti [3], and
the complex multiband filter and real/complex multipoint ones by Krukowski,
Cain and Kale [4].

Selecting Features Subject to Transformation
Choosing the appropriate frequency transformation for achieving the required
effect and the correct features of the prototype filter is very important
and needs careful consideration. It is not advisable to use a first-order
transformation for controlling more than one feature. The mapping filter
will not give enough flexibility. It is also not good to use higher order
transformation just to change the cutoff frequency of the lowpass filter. The
increase of the filter order would be too big, without considering the additional
replica of the prototype filter that may be created in undesired places.

Feature Selection for Real Lowpass to Bandpass Transformation

3-6

Details and Methodology

To illustrate the idea, the second-order real multipoint transformation was
applied three times to the same elliptic halfband filter in order to make it
into a bandpass filter. In each of the three cases, two different features of
the prototype filter were selected in order to obtain a bandpass filter with
passband ranging from 0.25 to 0.75. The position of the DC feature was not
important, but it would be advantageous if it were in the middle between
the edges of the passband in the target filter. In the first case the selected
features were the left and the right band edges of the lowpass filter passband,
in the second case they were the left band edge and the DC, in the third case
they were DC and the right band edge.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−60

−50

−40

−30

−20

−10

0

Left & right band−edges (solid)

Left band−edge and DC (dashed)

DC and right band−edges (dotted)

Magniture responses |H(ω)| in dB

Normalized Frequency (×π rad/sample)

Result of Choosing Different Features

The results of all three approaches are completely different. For each of them
only the selected features were positioned precisely where they were required.
In the first case the DC is moved toward the left passband edge just like all
the other features close to the left edge being squeezed there. In the second
case the right passband edge was pushed way out of the expected target as
the precise position of DC was required. In the third case the left passband
edge was pulled toward the DC in order to position it at the correct frequency.

3-7

3 Digital Frequency Transformations

The conclusion is that if only the DC can be anywhere in the passband, the
edges of the passband should have been selected for the transformation. For
most of the cases requiring the positioning of passbands and stopbands,
designers should always choose the position of the edges of the prototype
filter in order to make sure that they get the edges of the target filter in the
correct places. Frequency responses for the three cases considered are shown
in the figure. The prototype filter was a third-order elliptic lowpass filter
with cutoff frequency at 0.5.

The MATLAB code used to generate the figure is given here.

The prototype filter is a halfband elliptic, real, third-order lowpass filter:

[b, a] = ellip(3, 0.1, 30, 0.409);

In the example the requirements are set to create a real bandpass filter
with passband edges at 0.1 and 0.3 out of the real lowpass filter having the
cutoff frequency at 0.5. This is attempted in three different ways. In the first
approach both edges of the passband are selected, in the second approach the
left edge of the passband and the DC are chosen, while in the third approach
the DC and the right edge of the passband are taken:

[num1,den1] = iirlp2xn(b, a, [-0.5, 0.5], [0.1, 0.3]);
[num2,den2] = iirlp2xn(b, a, [-0.5, 0.0], [0.1, 0.2]);
[num3,den3] = iirlp2xn(b, a, [0.0, 0.5], [0.2, 0.3]);

Mapping from Prototype Filter to Target Filter
In general the frequency mapping converts the prototype filter, Ho(z), to the
target filter, HT(z), using the NAth-order allpass filter, HA(z). The general
form of the allpass mapping filter is given in “Overview of Transformations”
on page 3-2. The frequency mapping is a mathematical operation that
replaces each delayer of the prototype filter with an allpass filter. There
are two ways of performing such mapping. The choice of the approach is
dependent on how prototype and target filters are represented.

When the Nth-order prototype filter is given with pole-zero form

3-8

Details and Methodology

the mapping will replace each pole, pi, and each zero, zi, with a number of
poles and zeros equal to the order of the allpass mapping filter:

The root finding needs to be used on the bracketed expressions in order to find
the poles and zeros of the target filter.

When the prototype filter is described in the numerator-denominator form:

Then the mapping process will require a number of convolutions in order to
calculate the numerator and denominator of the target filter:

For each coefficient αi and βi of the prototype filter the NAth-order polynomials
must be convolved N times. Such approach may cause rounding errors for
large prototype filters and/or high order mapping filters. In such a case the
user should consider the alternative of doing the mapping using via poles
and zeros.

3-9

3 Digital Frequency Transformations

Summary of Frequency Transformations

Advantages

• Most frequency transformations are described by closed-form solutions or
can be calculated from the set of linear equations.

• They give predictable and familiar results.

• Ripple heights from the prototype filter are preserved in the target filter.

• They are architecturally appealing for variable and adaptive filters.

Disadvantages

• There are cases when using optimization methods to design the required
filter gives better results.

• High-order transformations increase the dimensionality of the target filter,
which may give expensive final results.

• Starting from fresh designs helps avoid locked-in compromises.

3-10

Frequency Transformations for Real Filters

Frequency Transformations for Real Filters

In this section...

“Overview” on page 3-11
“Real Frequency Shift” on page 3-11
“Real Lowpass to Real Lowpass” on page 3-13
“Real Lowpass to Real Highpass” on page 3-15
“Real Lowpass to Real Bandpass” on page 3-17
“Real Lowpass to Real Bandstop” on page 3-19
“Real Lowpass to Real Multiband” on page 3-21
“Real Lowpass to Real Multipoint” on page 3-23

Overview
This section discusses real frequency transformations that take the real
lowpass prototype filter and convert it into a different real target filter. The
target filter has its frequency response modified in respect to the frequency
response of the prototype filter according to the characteristic of the applied
frequency transformation.

Real Frequency Shift
Real frequency shift transformation uses a second-order allpass mapping
filter. It performs an exact mapping of one selected feature of the frequency
response into its new location, additionally moving both the Nyquist and DC
features. This effectively moves the whole response of the lowpass filter by
the distance specified by the selection of the feature from the prototype filter
and the target filter. As a real transformation, it works in a similar way
for positive and negative frequencies.

with α given by

3-11

3 Digital Frequency Transformations

where

ωold — Frequency location of the selected feature in the prototype filter

ωnew — Position of the feature originally at ωold in the target filter

The following example shows how this transformation can be used to move
the response of the prototype lowpass filter in either direction. Please note
that because the target filter must also be real, the response of the target
filter will inherently be disturbed at frequencies close to Nyquist and close to
DC. Here is the MATLAB code for generating the example in the figure.

The prototype filter is a halfband elliptic, real, third-order lowpass filter:

[b, a] = ellip(3, 0.1, 30, 0.409);

The example transformation moves the feature originally at 0.5 to 0.9:

[num,den] = iirshift(b, a, 0.5, 0.9);

3-12

Frequency Transformations for Real Filters

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−60

−50

−40

−30

−20

−10

0
Prototype filter

|H
(ω

)|
in

 d
B

Normalized Frequency (×π rad/sample)

ωo

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−60

−50

−40

−30

−20

−10

0
Target filter

|H
(ω

)|
 in

 d
B

Normalized Frequency (×π rad/sample)

ωt

Example of Real Frequency Shift Mapping

Real Lowpass to Real Lowpass
Real lowpass filter to real lowpass filter transformation uses a first-order
allpass mapping filter. It performs an exact mapping of one feature of the
frequency response into the new location keeping DC and Nyquist features
fixed. As a real transformation, it works in a similar way for positive and
negative frequencies. It is important to mention that using first-order
mapping ensures that the order of the filter after the transformation is the
same as it was originally.

with α given by

3-13

3 Digital Frequency Transformations

where

ωold — Frequency location of the selected feature in the prototype filter

ωnew — Frequency location of the same feature in the target filter

The example below shows how to modify the cutoff frequency of the prototype
filter. The MATLAB code for this example is shown in the following figure.

The prototype filter is a halfband elliptic, real, third-order filter:

[b, a] = ellip(3, 0.1, 30, 0.409);

The cutoff frequency moves from 0.5 to 0.75:

[num,den] = iirlp2lp(b, a, 0.5, 0.75);

3-14

Frequency Transformations for Real Filters

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−60

−50

−40

−30

−20

−10

0
Prototype filter

|H
(ω

)|
in

 d
B

Normalized Frequency (×π rad/sample)

ωo

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−60

−50

−40

−30

−20

−10

0
Target filter

|H
(ω

)|
 in

 d
B

Normalized Frequency (×π rad/sample)

ωt

Example of Real Lowpass to Real Lowpass Mapping

Real Lowpass to Real Highpass
Real lowpass filter to real highpass filter transformation uses a first-order
allpass mapping filter. It performs an exact mapping of one feature of the
frequency response into the new location additionally swapping DC and
Nyquist features. As a real transformation, it works in a similar way for
positive and negative frequencies. Just like in the previous transformation
because of using a first-order mapping, the order of the filter before and after
the transformation is the same.

with α given by

3-15

3 Digital Frequency Transformations

where

ωold — Frequency location of the selected feature in the prototype filter

ωnew — Frequency location of the same feature in the target filter

The example below shows how to convert the lowpass filter into a highpass
filter with arbitrarily chosen cutoff frequency. In the MATLAB code below,
the lowpass filter is converted into a highpass with cutoff frequency shifted
from 0.5 to 0.75. Results are shown in the figure.

The prototype filter is a halfband elliptic, real, third-order filter:

[b, a] = ellip(3, 0.1, 30, 0.409);

The example moves the cutoff frequency from 0.5 to 0.75:

[num,den] = iirlp2hp(b, a, 0.5, 0.75);

3-16

Frequency Transformations for Real Filters

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−60

−50

−40

−30

−20

−10

0
Prototype filter

|H
(ω

)|
in

 d
B

Normalized Frequency (×π rad/sample)

ωo

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−60

−50

−40

−30

−20

−10

0
Target filter

|H
(ω

)|
 in

 d
B

Normalized Frequency (×π rad/sample)

ωt

Example of Real Lowpass to Real Highpass Mapping

Real Lowpass to Real Bandpass
Real lowpass filter to real bandpass filter transformation uses a second-order
allpass mapping filter. It performs an exact mapping of two features of the
frequency response into their new location additionally moving a DC feature
and keeping the Nyquist feature fixed. As a real transformation, it works in a
similar way for positive and negative frequencies.

with α and β given by

3-17

3 Digital Frequency Transformations

where

ωold — Frequency location of the selected feature in the prototype filter

ωnew,1 — Position of the feature originally at (-ωold) in the target filter

ωnew,2 — Position of the feature originally at (+ωold) in the target filter

The example below shows how to move the response of the prototype lowpass
filter in either direction. Please note that because the target filter must
also be real, the response of the target filter will inherently be disturbed at
frequencies close to Nyquist and close to DC. Here is the MATLAB code for
generating the example in the figure.

The prototype filter is a halfband elliptic, real, third-order lowpass filter:

[b, a] = ellip(3, 0.1, 30, 0.409);

The example transformation creates the passband between 0.5 and 0.75:

[num,den] = iirlp2bp(b, a, 0.5, [0.5, 0.75]);

3-18

Frequency Transformations for Real Filters

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−60

−50

−40

−30

−20

−10

0
Prototype filter

|H
(ω

)|
in

 d
B

Normalized Frequency (×π rad/sample)

ωo

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−60

−50

−40

−30

−20

−10

0
Target filter

|H
(ω

)|
 in

 d
B

Normalized Frequency (×π rad/sample)

ωt1 ωt2

Example of Real Lowpass to Real Bandpass Mapping

Real Lowpass to Real Bandstop
Real lowpass filter to real bandstop filter transformation uses a second-order
allpass mapping filter. It performs an exact mapping of two features of
the frequency response into their new location additionally moving a
Nyquist feature and keeping the DC feature fixed. This effectively creates a
stopband between the selected frequency locations in the target filter. As
a real transformation, it works in a similar way for positive and negative
frequencies.

with α and β given by

3-19

3 Digital Frequency Transformations

where

ωold — Frequency location of the selected feature in the prototype filter

ωnew,1 — Position of the feature originally at (-ωold) in the target filter

ωnew,2 — Position of the feature originally at (+ωold) in the target filter

The following example shows how this transformation can be used to convert
the prototype lowpass filter with cutoff frequency at 0.5 into a real bandstop
filter with the same passband and stopband ripple structure and stopband
positioned between 0.5 and 0.75. Here is the MATLAB code for generating the
example in the figure.

The prototype filter is a halfband elliptic, real, third-order lowpass filter:

[b, a] = ellip(3, 0.1, 30, 0.409);

The example transformation creates a stopband from 0.5 to 0.75:

[num,den] = iirlp2bs(b, a, 0.5, [0.5, 0.75]);

3-20

Frequency Transformations for Real Filters

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−60

−50

−40

−30

−20

−10

0
Prototype filter

|H
(ω

)|
in

 d
B

Normalized Frequency (×π rad/sample)

ωo

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−60

−50

−40

−30

−20

−10

0
Target filter

|H
(ω

)|
 in

 d
B

Normalized Frequency (×π rad/sample)

ωt1 ωt2

Example of Real Lowpass to Real Bandstop Mapping

Real Lowpass to Real Multiband
This high-order transformation performs an exact mapping of one selected
feature of the prototype filter frequency response into a number of new
locations in the target filter. Its most common use is to convert a real lowpass
with predefined passband and stopband ripples into a real multiband filter
with N arbitrary band edges, where N is the order of the allpass mapping filter.

The coefficients α are given by

3-21

3 Digital Frequency Transformations

where

ωold,k— Frequency location of the first feature in the prototype filter

ωnew,k— Position of the feature originally at ωold,k in the target filter

The mobility factor, S, specifies the mobility or either DC or Nyquist feature:

The example below shows how this transformation can be used to convert the
prototype lowpass filter with cutoff frequency at 0.5 into a filter having a
number of bands positioned at arbitrary edge frequencies 1/5, 2/5, 3/5 and 4/5.
Parameter S was such that there is a passband at DC. Here is the MATLAB
code for generating the figure.

The prototype filter is a halfband elliptic, real, third-order lowpass filter:

[b, a] = ellip(3, 0.1, 30, 0.409);

The example transformation creates three stopbands, from DC to 0.2, from
0.4 to 0.6 and from 0.8 to Nyquist:

[num,den] = iirlp2mb(b, a, 0.5, [0.2, 0.4, 0.6, 0.8], `pass');

3-22

Frequency Transformations for Real Filters

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−60

−50

−40

−30

−20

−10

0
Prototype filter

|H
(ω

)|
in

 d
B

Normalized Frequency (×π rad/sample)

ωo

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−60

−50

−40

−30

−20

−10

0
Target filter

|H
(ω

)|
 in

 d
B

Normalized Frequency (×π rad/sample)

ωt1 ωt2 ωt3 ωt4

Example of Real Lowpass to Real Multiband Mapping

Real Lowpass to Real Multipoint
This high-order frequency transformation performs an exact mapping of a
number of selected features of the prototype filter frequency response to their
new locations in the target filter. The mapping filter is given by the general
IIR polynomial form of the transfer function as given below.

For the Nth-order multipoint frequency transformation the coefficients α are

3-23

3 Digital Frequency Transformations

where

ωold,k— Frequency location of the first feature in the prototype filter

ωnew,k— Position of the feature originally at ωold,k in the target filter

The mobility factor, S, specifies the mobility of either DC or Nyquist feature:

The example below shows how this transformation can be used to move
features of the prototype lowpass filter originally at -0.5 and 0.5 to their new
locations at 0.5 and 0.75, effectively changing a position of the filter passband.
Here is the MATLAB code for generating the figure.

The prototype filter is a halfband elliptic, real, third-order lowpass filter:

[b, a] = ellip(3, 0.1, 30, 0.409);

The example transformation creates a passband from 0.5 to 0.75:

[num,den] = iirlp2xn(b, a, [-0.5, 0.5], [0.5, 0.75], `pass');

3-24

Frequency Transformations for Real Filters

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−60

−50

−40

−30

−20

−10

0
Prototype filter

|H
(ω

)|
in

 d
B

Normalized Frequency (×π rad/sample)

ωo2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−60

−50

−40

−30

−20

−10

0
Target filter

|H
(ω

)|
 in

 d
B

Normalized Frequency (×π rad/sample)

ωt1 ωt2

Example of Real Lowpass to Real Multipoint Mapping

3-25

3 Digital Frequency Transformations

Frequency Transformations for Complex Filters

In this section...

“Overview” on page 3-26
“Complex Frequency Shift” on page 3-26
“Real Lowpass to Complex Bandpass” on page 3-28
“Real Lowpass to Complex Bandstop” on page 3-30
“Real Lowpass to Complex Multiband” on page 3-32
“Real Lowpass to Complex Multipoint” on page 3-34
“Complex Bandpass to Complex Bandpass” on page 3-36

Overview
This section discusses complex frequency transformation that take the
complex prototype filter and convert it into a different complex target filter.
The target filter has its frequency response modified in respect to the
frequency response of the prototype filter according to the characteristic of the
applied frequency transformation from:

Complex Frequency Shift
Complex frequency shift transformation is the simplest first-order
transformation that performs an exact mapping of one selected feature of the
frequency response into its new location. At the same time it rotates the
whole response of the prototype lowpass filter by the distance specified by the
selection of the feature from the prototype filter and the target filter.

with α given by

where

3-26

Frequency Transformations for Complex Filters

ωold— Frequency location of the selected feature in the prototype filter

ωnew— Position of the feature originally at ωold in the target filter

A special case of the complex frequency shift is a, so called, Hilbert
Transformer. It can be designed by setting the parameter to |α|=1, that is

The example below shows how to apply this transformation to rotate the
response of the prototype lowpass filter in either direction. Please note that
because the transformation can be achieved by a simple phase shift operator,
all features of the prototype filter will be moved by the same amount. Here is
the MATLAB code for generating the example in the figure.

The prototype filter is a halfband elliptic, real, third-order lowpass filter:

[b, a] = ellip(3, 0.1, 30, 0.409);

The example transformation moves the feature originally at 0.5 to 0.3:

[num,den] = iirshiftc(b, a, 0.5, 0.3);

3-27

3 Digital Frequency Transformations

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−60

−50

−40

−30

−20

−10

0
Prototype filter

|H
(ω

)|
in

 d
B

Normalized Frequency (×π rad/sample)

ωo

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−60

−50

−40

−30

−20

−10

0
Target filter

|H
(ω

)|
 in

 d
B

Normalized Frequency (×π rad/sample)

ωt

Example of Complex Frequency Shift Mapping

Real Lowpass to Complex Bandpass
This first-order transformation performs an exact mapping of one selected
feature of the prototype filter frequency response into two new locations in
the target filter creating a passband between them. Both Nyquist and DC
features can be moved with the rest of the frequency response.

with α and β are given by

3-28

Frequency Transformations for Complex Filters

where

ωold— Frequency location of the selected feature in the prototype filter

ωnew,1— Position of the feature originally at (-ωold) in the target filter

ωnew,2— Position of the feature originally at (+ωold) in the target filter

The following example shows the use of such a transformation for converting
a real halfband lowpass filter into a complex bandpass filter with band edges
at 0.5 and 0.75. Here is the MATLAB code for generating the example in
the figure.

The prototype filter is a half band elliptic, real, third-order lowpass filter:

[b, a] = ellip(3, 0.1, 30, 0.409);

The transformation creates a passband from 0.5 to 0.75:

[num,den] = iirlp2bpc(b, a, 0.5, [0.5 0.75]);

3-29

3 Digital Frequency Transformations

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−60

−50

−40

−30

−20

−10

0
Prototype filter

|H
(ω

)|
in

 d
B

Normalized Frequency (×π rad/sample)

ωo

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−60

−50

−40

−30

−20

−10

0
Target filter

|H
(ω

)|
 in

 d
B

Normalized Frequency (×π rad/sample)

ωt1

ωt2

Example of Real Lowpass to Complex Bandpass Mapping

Real Lowpass to Complex Bandstop
This first-order transformation performs an exact mapping of one selected
feature of the prototype filter frequency response into two new locations in
the target filter creating a stopband between them. Both Nyquist and DC
features can be moved with the rest of the frequency response.

with α and β are given by

3-30

Frequency Transformations for Complex Filters

where

ωold— Frequency location of the selected feature in the prototype filter

ωnew,1— Position of the feature originally at (-ωold) in the target filter

ωnew,2— Position of the feature originally at (+ωold) in the target filter

The example below shows the use of such a transformation for converting a
real halfband lowpass filter into a complex bandstop filter with band edges
at 0.5 and 0.75. Here is the MATLAB code for generating the example in
the figure.

The prototype filter is a halfband elliptic, real, third-order lowpass filter:

[b, a] = ellip(3, 0.1, 30, 0.409);

The transformation creates a stopband from 0.5 to 0.75:

[num,den] = iirlp2bsc(b, a, 0.5, [0.5 0.75]);

3-31

3 Digital Frequency Transformations

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−60

−50

−40

−30

−20

−10

0
Prototype filter

|H
(ω

)|
in

 d
B

Normalized Frequency (×π rad/sample)

ωo

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−60

−50

−40

−30

−20

−10

0
Target filter

|H
(ω

)|
 in

 d
B

Normalized Frequency (×π rad/sample)

ωt1 ωt2

Example of Real Lowpass to Complex Bandstop Mapping

Real Lowpass to Complex Multiband
This high-order transformation performs an exact mapping of one selected
feature of the prototype filter frequency response into a number of new
locations in the target filter. Its most common use is to convert a real lowpass
with predefined passband and stopband ripples into a multiband filter
with arbitrary band edges. The order of the mapping filter must be even,
which corresponds to an even number of band edges in the target filter. The
Nth-order complex allpass mapping filter is given by the following general
transfer function form:

3-32

Frequency Transformations for Complex Filters

The coefficients α are calculated from the system of linear equations:

where

ωold— Frequency location of the selected feature in the prototype filter

ωnew,i— Position of features originally at ±ωold in the target filter

Parameter S is the additional rotation factor by the frequency distance ΔC,
giving the additional flexibility of achieving the required mapping:

The example shows the use of such a transformation for converting a prototype
real lowpass filter with the cutoff frequency at 0.5 into a multiband complex
filter with band edges at 0.2, 0.4, 0.6 and 0.8, creating two passbands around
the unit circle. Here is the MATLAB code for generating the figure.

3-33

3 Digital Frequency Transformations

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−60

−50

−40

−30

−20

−10

0
Prototype filter

|H
(ω

)|
in

 d
B

Normalized Frequency (×π rad/sample)

ωo

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−60

−50

−40

−30

−20

−10

0
Target filter

|H
(ω

)|
 in

 d
B

Normalized Frequency (×π rad/sample)

ωt1 ωt2 ωt3 ωt4

Example of Real Lowpass to Complex Multiband Mapping

The prototype filter is a halfband elliptic, real, third-order lowpass filter:

[b, a] = ellip(3, 0.1, 30, 0.409);

The example transformation creates two complex passbands:

[num,den] = iirlp2mbc(b, a, 0.5, [0.2, 0.4, 0.6, 0.8]);

Real Lowpass to Complex Multipoint
This high-order transformation performs an exact mapping of a number
of selected features of the prototype filter frequency response to their new
locations in the target filter. The Nth-order complex allpass mapping filter is
given by the following general transfer function form.

3-34

Frequency Transformations for Complex Filters

The coefficients α can be calculated from the system of linear equations:

where

ωold,k— Frequency location of the first feature in the prototype filter

ωnew,k— Position of the feature originally at ωold,k in the target filter

Parameter S is the additional rotation factor by the frequency distance ΔC,
giving the additional flexibility of achieving the required mapping:

The following example shows how this transformation can be used to move
one selected feature of the prototype lowpass filter originally at -0.5 to two
new frequencies -0.5 and 0.1, and the second feature of the prototype filter

3-35

3 Digital Frequency Transformations

from 0.5 to new locations at -0.25 and 0.3. This creates two nonsymmetric
passbands around the unit circle, creating a complex filter. Here is the
MATLAB code for generating the figure.

The prototype filter is a halfband elliptic, real, third-order lowpass filter:

[b, a] = ellip(3, 0.1, 30, 0.409);

The example transformation creates two nonsymmetric passbands:

[num,den] = iirlp2xc(b,a,0.5*[-1,1,-1,1], [-0.5,-0.25,0.1,0.3]);

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−60

−50

−40

−30

−20

−10

0
Prototype filter

|H
(ω

)|
in

 d
B

Normalized Frequency (×π rad/sample)

ωo1 ωo2

ωo3 ωo4

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−60

−50

−40

−30

−20

−10

0
Target filter

|H
(ω

)|
 in

 d
B

Normalized Frequency (×π rad/sample)

ωt1 ωt2 ωt3 ωt4

Example of Real Lowpass to Complex Multipoint Mapping

Complex Bandpass to Complex Bandpass
This first-order transformation performs an exact mapping of two selected
features of the prototype filter frequency response into two new locations in
the target filter. Its most common use is to adjust the edges of the complex
bandpass filter.

3-36

Frequency Transformations for Complex Filters

with α and β are given by

where

ωold,1— Frequency location of the first feature in the prototype filter

ωold,2— Frequency location of the second feature in the prototype filter

ωnew,1— Position of the feature originally at ωold,1 in the target filter

ωnew,2— Position of the feature originally at ωold,2 in the target filter

The following example shows how this transformation can be used to modify
the position of the passband of the prototype filter, either real or complex. In
the example below the prototype filter passband spanned from 0.5 to 0.75.
It was converted to having a passband between -0.5 and 0.1. Here is the
MATLAB code for generating the figure.

The prototype filter is a halfband elliptic, real, third-order lowpass filter:

[b, a] = ellip(3, 0.1, 30, 0.409);

The example transformation creates a passband from 0.25 to 0.75:

[num,den] = iirbpc2bpc(b, a, [0.25, 0.75], [-0.5, 0.1]);

3-37

3 Digital Frequency Transformations

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−60

−50

−40

−30

−20

−10

0
Prototype filter

|H
(ω

)|
in

 d
B

Normalized Frequency (×π rad/sample)

ωo1 ωo2

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−60

−50

−40

−30

−20

−10

0
Target filter

|H
(ω

)|
 in

 d
B

Normalized Frequency (×π rad/sample)

ωt1 ωt2

Example of Complex Bandpass to Complex Bandpass Mapping

3-38

4

Using FDATool with Filter
Design Toolbox Software

• “Designing Advanced Filters in FDATool” on page 4-2

• “Switching FDATool to Quantization Mode” on page 4-6

• “Quantizing Filters in the Filter Design and Analysis Tool” on page 4-9

• “Analyzing Filters with a Noise-Based Method” on page 4-20

• “Scaling Second-Order Section Filters” on page 4-28

• “Reordering the Sections of Second-Order Section Filters” on page 4-36

• “Viewing SOS Filter Sections” on page 4-43

• “Importing and Exporting Quantized Filters” on page 4-50

• “Importing XILINX Coefficient (.COE) Files” on page 4-55

• “Transforming Filters” on page 4-56

• “Designing Multirate Filters in FDATool” on page 4-67

• “Realizing Filters as Simulink Subsystem Blocks” on page 4-84

• “Getting Help for FDATool” on page 4-89

4 Using FDATool with Filter Design Toolbox™ Software

Designing Advanced Filters in FDATool

In this section...

“Overview of FDATool Features” on page 4-2
“Using FDATool with Filter Design Toolbox Software” on page 4-3
“Example — Design a Notch Filter” on page 4-3

Overview of FDATool Features
Filter Design Toolbox software adds new dialog boxes and operating modes,
and new menu selections, to the Filter Design and Analysis Tool (FDATool)
provided by Signal Processing Toolbox™ software. From the new dialog
boxes, one titled Set Quantization Parameters and one titled Frequency
Transformations, you can:

• Design advanced filters that Signal Processing Toolbox software does not
provide the design tools to develop.

• View Simulink models of the filter structures available in the toolbox.

• Quantize double-precision filters you design in this GUI using the design
mode.

• Quantize double-precision filters you import into this GUI using the import
mode.

• Analyze quantized filters.

• Scale second-order section filters.

• Select the quantization settings for the properties of the quantized filter
displayed by the tool:

- Coefficients — select the quantization options applied to the filter
coefficients

- Input/output — control how the filter processes input and output data

- Filter Internals — specify how the arithmetic for the filter behaves

• Design multirate filters.

• Transform both FIR and IIR filters from one response to another.

4-2

Designing Advanced Filters in FDATool

After you import a filter in to FDATool, the options on the quantization
dialog box let you quantize the filter and investigate the effects of various
quantization settings.

Options in the frequency transformations dialog box let you change the
frequency response of your filter, keeping various important features while
changing the response shape.

Using FDATool with Filter Design Toolbox Software
Adding Filter Design Toolbox software to your tool suite adds a number of
filter design techniques to FDATool. Use the new filter responses to develop
filters that meet more complex requirements than those you can design in
Signal Processing Toolbox software. While the designs in FDATool are
available as command line functions, the graphical user interface of FDATool
makes the design process more clear and easier to accomplish.

As you select a response type, the options in the right panes in FDATool
change to let you set the values that define your filter. You also see that the
analysis area includes a diagram (called a design mask) that describes the
options for the filter response you choose.

By reviewing the mask you can see how the options are defined and how
to use them. While this is usually straightforward for lowpass or highpass
filter responses, setting the options for the arbitrary response types or the
peaking/notching filters is more complicated. Having the masks leads you
to your result more easily.

Changing the filter design method changes the available response type
options. Similarly, the response type you select may change the filter design
methods you can choose.

Example — Design a Notch Filter
Notch filters aim to remove one or a few frequencies from a broader spectrum.
You must specify the frequencies to remove by setting the filter design options
in FDATool appropriately:

• Response Type

4-3

4 Using FDATool with Filter Design Toolbox™ Software

• Design Method

• Frequency Specifications

• Magnitude Specifications

Here is how you design a notch filter that removes concert A (440 Hz) from
an input musical signal spectrum.

1 Select Notching from the Differentiator list in Response Type.

2 Select IIR in Filter Design Method and choose Single Notch from the
list.

3 For the Frequency Specifications, set Units to Hz and Fs, the full scale
frequency, to 10000.

4 Set the location of the center of the notch, in either normalized frequency
or Hz. For the notch center at 440 Hz, enter 440.

5 To shape the notch, enter the bandwidth, bw, to be 40.

6 Leave theMagnitude Specification in dB (the default) and leave Apass
as 1.

7 Click Design Filter.

FDATool computes the filter coefficients and plots the filter magnitude
response in the analysis area for you to review.

When you design a single notch filter, you do not have the option of setting
the filter order — the Filter Order options are disabled.

Your filter should look about like this:

4-4

Designing Advanced Filters in FDATool

For more information about a design method, refer to the online Help system.
For instance, to get further information about the Q setting for the notch
filter in FDATool, enter

doc iirnotch

at the prompt. This opens the Help browser and displays the reference page
for function iirnotch.

Designing other filters follows a similar procedure, adjusting for different
design specification options as each design requires.

Any one of the designs may be quantized in FDATool and analyzed with the
available analyses on the Analysis menu. For more general information
about FDATool, such as the user interface and areas, refer to the FDATool
documentation in the Signal Processing Toolbox documentation. One way
to do this is to enter

doc signal/fdatool

at the prompt. The signal qualifier is necessary to open the reference page
in Signal Processing Toolbox documentation, rather than the page in Filter
Design Toolbox documentation. You might also look at the general section on
FDATool in the Signal Processing Toolbox User’s Guide.

4-5

4 Using FDATool with Filter Design Toolbox™ Software

Switching FDATool to Quantization Mode
You use the quantization mode in FDATool to quantize filters. Quantization
represents the fourth operating mode for FDATool, along with the filter
design, filter transformation, and import modes. To switch to quantization
mode, open FDATool from the MATLAB command prompt by entering

fdatool

You see FDATool in this configuration.

4-6

Switching FDATool to Quantization Mode

When FDATool opens, click the Set Quantization Parameters button
on the side bar. FDATool switches to quantization mode and you see the
following panel at the bottom of FDATool, with the default double-precision
option shown for Filter Arithmetic.

The Filter Arithmetic option lets you quantize filters and investigate the
effects of changing quantization settings. To enable the quantization settings
in FDATool, select Fixed-point from the Filter Arithmetic.

The quantization options appear in the lower panel of FDATool. You see tabs
that access various sets of options for quantizing your filter.

4-7

4 Using FDATool with Filter Design Toolbox™ Software

You use the following tabs in the dialog box to perform tasks related to
quantizing filters in FDATool:

• Coefficients provides access the settings for defining the coefficient
quantization. This is the default active panel when you switch FDATool to
quantization mode without a quantized filter in the tool. When you import
a fixed-point filter into FDATool, this is the active pane when you switch
to quantization mode.

• Input/Output switches FDATool to the options for quantizing the inputs
and outputs for your filter.

• Filter Internals lets you set a variety of options for the arithmetic your
filter performs, such as how the filter handles the results of multiplication
operations or how the filter uses the accumulator.

• Apply — applies changes you make to the quantization parameters for
your filter.

4-8

Quantizing Filters in the Filter Design and Analysis Tool

Quantizing Filters in the Filter Design and Analysis Tool

In this section...

“Setting Quantization Parameters” on page 4-9
“Coefficients Options” on page 4-10
“Input/Output Options” on page 4-12
“Filter Internals Options” on page 4-14
“Filter Internals Options for CIC Filters” on page 4-17

Setting Quantization Parameters
Quantized filters have properties that define how they quantize data you
filter. Use the Set Quantization Parameters dialog box in FDATool to set
the properties. Using options in the Set Quantization Parameters dialog
box, FDATool lets you perform a number of tasks:

• Create a quantized filter from a double-precision filter after either
importing the filter from your workspace, or using FDATool to design the
prototype filter.

• Create a quantized filter that has the default structure (Direct form II
transposed) or any structure you choose, and other property values you
select.

• Change the quantization property values for a quantized filter after you
design the filter or import it from your workspace.

When you click Set Quantization Parameters, and then change Filter
Arithmetic to Fixed-point, the quantized filter panel opens in FDATool,
with the coefficient quantization options set to default values. In this image,
you see the options for an SOS filter. Some of the options shown apply only
to SOS filters. Other filter structures present a subset of the options you
see here.

4-9

4 Using FDATool with Filter Design Toolbox™ Software

Coefficients Options
To let you set the properties for the filter coefficients that make up your
quantized filter, FDATool lists options for numerator word length (and
denominator word length if you have an IIR filter). The following table lists
each coefficients option and a short description of what the option setting
does in the filter.

Option Name When Used Description

Numerator Word Length FIR filters only Sets the word length used to
represent numerator coefficients in
FIR filters.

Numerator Frac. Length FIR/IIR Sets the fraction length used to
interpret numerator coefficients in
FIR filters.

Numerator Range (+/-) FIR/IIR Lets you set the range the
numerators represent. You use this
instead of the Numerator Frac.
Length option to set the precision.
When you enter a value x, the
resulting range is -x to x. Range
must be a positive integer.

4-10

Quantizing Filters in the Filter Design and Analysis Tool

Option Name When Used Description

Coefficient Word Length IIR filters only Sets the word length used to
represent both numerator and
denominator coefficients in IIR
filters. You cannot set different
word lengths for the numerator and
denominator coefficients.

Denominator Frac. Length IIR filters Sets the fraction length used to
interpret denominator coefficients
in IIR filters.

Denominator Range (+/-) IIR filters Lets you set the range the
denominator coefficients represent.
You use this instead of the
Denominator Frac. Length
option to set the precision. When
you enter a value x, the resulting
range is -x to x. Range must be a
positive integer.

Best-precision fraction
lengths

All filters Directs FDATool to select the
fraction lengths for numerator
(and denominator where available)
values to maximize the filter
performance. Selecting this option
disables all of the fraction length
options for the filter.

Scale Values frac. length SOS IIR filters Sets the fraction length used to
interpret the scale values in SOS
filters.

4-11

4 Using FDATool with Filter Design Toolbox™ Software

Option Name When Used Description

Scale Values range (+/-) SOS IIR filters Lets you set the range the SOS
scale values represent. You use
this with SOS filters to adjust the
scaling used between filter sections.
Setting this value disables the
Scale Values frac. length option.
When you enter a value x, the
resulting range is -x to x. Range
must be a positive integer.

Use unsigned
representation

All filters Tells FDATool to interpret the
coefficients as unsigned values.

Scale the numerator
coefficients to fully utilize
the entire dynamic range

All filters Directs FDATool to scale the
numerator coefficients to effectively
use the dynamic range defined by
the numerator word length and
fraction length format.

Input/Output Options
The options that specify how the quantized filter uses input and output values
are listed in the table below. In the following picture you see the options
for an SOS filter.

4-12

Quantizing Filters in the Filter Design and Analysis Tool

Option Name When Used Description

Input Word Length All filters Sets the word length used to represent
the input to a filter.

Input fraction length All filters Sets the fraction length used to interpret
input values to filter.

Input range (+/-) All filters Lets you set the range the inputs
represent. You use this instead of the
Input fraction length option to set the
precision. When you enter a value x, the
resulting range is -x to x. Range must be
a positive integer.

Output word length All filters Sets the word length used to represent
the output from a filter.

Avoid overflow All filters Directs the filter to set the fraction length
for the input to prevent the output values
from exceeding the available range as
defined by the word length. Clearing
this option lets you set Output fraction
length.

Output fraction
length

All filters Sets the fraction length used to represent
output values from a filter.

Output range (+/-) All filters Lets you set the range the outputs
represent. You use this instead of the
Output fraction length option to set
the precision. When you enter a value
x, the resulting range is -x to x. Range
must be a positive integer.

Stage input word
length

SOS filters only Sets the word length used to represent
the input to an SOS filter section.

Avoid overflow SOS filters only Directs the filter to use a fraction length
for stage inputs that prevents overflows
in the values. When you clear this option,
you can set Stage input fraction
length.

4-13

4 Using FDATool with Filter Design Toolbox™ Software

Option Name When Used Description

Stage input fraction
length

SOS filters only Sets the fraction length used to represent
input to a section of an SOS filter.

Stage output word
length

SOS filters only Sets the word length used to represent
the output from an SOS filter section.

Avoid overflow SOS filters only Directs the filter to use a fraction length
for stage outputs that prevents overflows
in the values. When you clear this option,
you can set Stage output fraction
length.

Stage output fraction
length

SOS filters only Sets the fraction length used to represent
the output from a section of an SOS filter.

Filter Internals Options
The options that specify how the quantized filter performs arithmetic
operations are listed in the table after the figure. In the following picture
you see the options for an SOS filter.

4-14

Quantizing Filters in the Filter Design and Analysis Tool

Option

Equivalent Filter
Property (Using
Wildcard *) Description

Round towards RoundMode Sets the mode the filter uses to quantize
numeric values when the values lie
between representable values for the
data format (word and fraction lengths).
Choose from one of:

• ceil - Round toward positive infinity.

• convergent - Round to the closest
representable integer. Ties round to
the nearest even stored integer. This
is the least biased of the methods
available in this software.

• fix/zero - Round toward zero.

• floor - Round toward negative
infinity.

• nearest - Round toward nearest. Ties
round toward positive infinity.

• round - Round toward nearest.
Ties round toward negative infinity
for negative numbers, and toward
positive infinity for positive numbers.

Overflow Mode OverflowMode Sets the mode used to respond to
overflow conditions in fixed-point
arithmetic. Choose from either
saturate (limit the output to the largest
positive or negative representable value)
or wrap (set overflowing values to the
nearest representable value using
modular arithmetic.

Filter Product (Multiply) Options

4-15

4 Using FDATool with Filter Design Toolbox™ Software

Option

Equivalent Filter
Property (Using
Wildcard *) Description

Product Mode ProductMode Determines how the filter handles the
output of product operations. Choose
from full precision (FullPrecision), or
whether to keep the most significant
bit (KeepMSB) or least significant bit
(KeepLSB) in the result when you need to
shorten the word length. Specify all
lets you set the fraction length applied
to the results of product operations.

Product word length *ProdWordLength Sets the word length applied to interpret
the results of multiply operations.

Num. fraction length NumProdFracLength Sets the fraction length used to interpret
the results of product operations that
involve numerator coefficients.

Den. fraction length DenProdFracLength Sets the fraction length used to interpret
the results of product operations that
involve denominator coefficients.

Filter Sum Options
Accum. mode AccumMode Determines how the accumulator

outputs stored values. Choose from
full precision (FullPrecision), or
whether to keep the most significant
bits (KeepMSB) or least significant
bits (KeepLSB) when output results
need shorter word length than the
accumulator supports. To let you set
the word length and the precision (the
fraction length) used by the output from
the accumulator, set this to Specify
all.

Accum. word length *AccumWordLength Sets the word length used to store data
in the accumulator/buffer.

4-16

Quantizing Filters in the Filter Design and Analysis Tool

Option

Equivalent Filter
Property (Using
Wildcard *) Description

Num. fraction length NumAccumFracLength Sets the fraction length used to interpret
the numerator coefficients.

Den. fraction length DenAccumFracLength Sets the fraction length the filter uses to
interpret denominator coefficients.

Cast signals before
sum

CastBeforeSum Specifies whether to cast numeric data
to the appropriate accumulator format
(as shown in the signal flow diagrams for
each filter structure) before performing
sum operations.

Filter State Options
State word length *StateWordLength Sets the word length used to represent

the filter states. Applied to both
numerator- and denominator-related
states

Avoid overflow None Prevent overflows in arithmetic
calculations by setting the fraction
length appropriately.

State fraction length *StateFracLength Lets you set the fraction length
applied to interpret the filter states.
Applied to both numerator- and
denominator-related states

Filter Internals Options for CIC Filters
CIC filters use slightly different options for specifying the fixed-point
arithmetic in the filter. The next table shows and describes the options.

Example — Quantize Double-Precision Filters
When you are quantizing a double-precision filter by switching to fixed-point
or single-precision floating point arithmetic, follow these steps.

4-17

4 Using FDATool with Filter Design Toolbox™ Software

1 Click Set Quantization Parameters to display the Set Quantization
Parameters pane in FDATool.

2 Select Single-precision floating point or Fixed-point from Filter
arithmetic.

When you select one of the optional arithmetic settings, FDATool quantizes
the current filter according to the settings of the options in the Set
Quantization Parameter panes, and changes the information displayed in
the analysis area to show quantized filter data.

3 In the quantization panes, set the options for your filter. Set options for
Coefficients, Input/Output, and Filter Internals.

4 Click Apply.

FDATool quantizes your filter using your new settings.

5 Use the analysis features in FDATool to determine whether your new
quantized filter meets your requirements.

Example — Change the Quantization Properties of Quantized
Filters
When you are changing the settings for the quantization of a quantized filter,
or after you import a quantized filter from your MATLAB workspace, follow
these steps to set the property values for the filter:

1 Verify that the current filter is quantized.

2 Click Set Quantization Parameters to display the Set Quantization
Parameters panel.

3 Review and select property settings for the filter quantization:
Coefficients, Input/Output, and Filter Internals. Settings for options
on these panes determine how your filter quantizes data during filtering
operations.

4 Click Apply to update your current quantized filter to use the new
quantization property settings from Step 3.

4-18

Quantizing Filters in the Filter Design and Analysis Tool

5 Use the analysis features in FDATool to determine whether your new
quantized filter meets your requirements.

4-19

4 Using FDATool with Filter Design Toolbox™ Software

Analyzing Filters with a Noise-Based Method

In this section...

“Using the Magnitude Response Estimate Method” on page 4-20
“Comparing the Estimated and Theoretical Magnitude Responses” on page
4-25
“Choosing Quantized Filter Structures” on page 4-25
“Converting the Structure of a Quantized Filter” on page 4-25
“Converting Filters to Second-Order Sections Form” on page 4-26

Using the Magnitude Response Estimate Method
After you design and quantize your filter, the Magnitude Response
Estimate option on the Analysis menu lets you apply the noise loading
method to your filter. When you select Analysis > Magnitude Response
Estimate from the menubar, FDATool immediately starts the Monte Carlo
trials that form the basis for the method and runs the analysis, ending by
displaying the results in the analysis area in FDATool.

With the noise-based method, you estimate the complex frequency response
for your filter as determined by applying a noise- like signal to the filter input.
Magnitude Response Estimate uses the Monte Carlo trials to generate a
noise signal that contains complete frequency content across the range 0 to
Fs. The first time you run the analysis, magnitude response estimate uses
default settings for the various conditions that define the process, such as the
number of test points and the number of trials.

Analysis Parameter
Default
Setting Description

Number of Points 512 Number of equally spaced points
around the upper half of the unit
circle.

Frequency Range 0 to Fs/2 Frequency range of the plot
x-axis.

4-20

Analyzing Filters with a Noise-Based Method

Analysis Parameter
Default
Setting Description

Frequency Units Hz Units for specifying the frequency
range.

Sampling Frequency 48000 Inverse of the sampling period.
Frequency Scale dB Units used for the y-axis display

of the output.
Normalized
Frequency

Off Use normalized frequency for the
display.

After your first analysis run ends, open the Analysis Parameters dialog
box and adjust your settings appropriately, such as changing the number of
trials or number of points.

To open the Analysis Parameters dialog box, use either of the next
procedures when you have a quantized filter in FDATool:

• Select Analysis > Analysis Parameters from the menu bar

• Right-click in the filter analysis area and select Analysis Parameters
from the context menu

Whichever option you choose opens the dialog box as shown in the figure.
Notice that the settings for the options reflect the defaults.

4-21

4 Using FDATool with Filter Design Toolbox™ Software

Example — Noise Method Applied to a Filter
To demonstrate the magnitude response estimate method, start by creating
a quantized filter. For this example, use FDATool to design a sixth-order
Butterworth IIR filter.

To Use Noise-Based Analysis in FDATool

1 Enter fdatool at the MATLAB prompt to launch FDATool.

2 Under Response Type, select Highpass.

3 Select IIR in Design Method. Then select Butterworth.

4 To set the filter order to 6, select Specify order under Filter Order.
Enter 6 in the text box.

5 Click Design Filter.

In FDATool, the analysis area changes to display the magnitude response
for your filter.

6 To generate the quantized version of your filter, using default quantizer
settings, click on the side bar.

4-22

Analyzing Filters with a Noise-Based Method

FDATool switches to quantization mode and displays the quantization
panel.

7 From Filter arithmetic, select fixed-point.

Now the analysis areas shows the magnitude response for both filters —
your original filter and the fixed-point arithmetic version.

8 Finally, to use noise-based estimation on your quantized filter, select
Analysis > Magnitude Response Estimate from the menubar.

FDATool runs the trial, calculates the estimated magnitude response for
the filter, and displays the result in the analysis area as shown in this
figure.

In the above figure you see the magnitude response as estimated by the
analysis method.

To View the Noise Power Spectrum
When you use the noise method to estimate the magnitude response of a filter,
FDATool simulates and applies a spectrum of noise values to test your filter
response. While the simulated noise is essentially white, you might want to
see the actual spectrum that FDATool used to test your filter.

4-23

4 Using FDATool with Filter Design Toolbox™ Software

From the Analysis menu bar option, select Round-off Noise Power
Spectrum. In the analysis area in FDATool, you see the spectrum of the
noise used to estimate the filter response. The details of the noise spectrum,
such as the range and number of data points, appear in the Analysis
Parameters dialog box.

To Change Your Noise Analysis Parameters
In “Example — Noise Method Applied to a Filter” on page 4-22, you used
synthetic white noise to estimate the magnitude response for a fixed-point
highpass Butterworth filter. Since you ran the estimate only once in FDATool,
your noise analysis used the default analysis parameters settings shown in
“Using the Magnitude Response Estimate Method” on page 4-20.

To change the settings, follow these steps after the first time you use the
noise estimate on your quantized filter.

1 With the results from running the noise estimating method displayed in
the FDATool analysis area, select Analysis > Analysis Parameters from
the menubar.

To give you access to the analysis parameters, the Analysis Parameters
dialog box opens as shown here (with default settings).

2 To use more points in the spectrum to estimate the magnitude response,
change Number of Points to 1024 and click OK to run the analysis.

4-24

Analyzing Filters with a Noise-Based Method

FDATool closes the Analysis Parameters dialog box and reruns the noise
estimate, returning the results in the analysis area.

To rerun the test without closing the dialog box, press Enter after you type
your new value into a setting, then click Apply. Now FDATool runs the
test without closing the dialog box. When you want to try many different
settings for the noise-based analysis, this is a useful shortcut.

Comparing the Estimated and Theoretical Magnitude
Responses
An important measure of the effectiveness of the noise method for estimating
the magnitude response of a quantized filter is to compare the estimated
response to the theoretical response.

One way to do this comparison is to overlay the theoretical response on the
estimated response. While you have the Magnitude Response Estimate
displaying in FDATool, select Analysis > Overlay Analysis from the menu
bar. Then selectMagnitude Response to show both response curves plotted
together in the analysis area.

Choosing Quantized Filter Structures
FDATool lets you change the structure of any quantized filter. Use the
Convert structure option to change the structure of your filter to one that
meets your needs.

To learn about changing the structure of a filter in FDATool, refer to
“Converting to a New Structure” in your Signal Processing Toolbox
documentation.

Converting the Structure of a Quantized Filter
You use the Convert structure option to change the structure of filter. When
the Source is Designed(Quantized) or Imported(Quantized), Convert
structure lets you recast the filter to one of the following structures:

• “Direct Form II Transposed Filter Structure” on page 7-52

• “Direct Form I Transposed Filter Structure” on page 7-49

4-25

4 Using FDATool with Filter Design Toolbox™ Software

• “Direct Form II Filter Structure” on page 7-50

• “Direct Form I Filter Structure” on page 7-47

• “Direct Form Finite Impulse Response (FIR) Filter Structure” on page 7-56

• “Direct Form FIR Transposed Filter Structure” on page 7-57

• “Lattice Autoregressive Moving Average (ARMA) Filter Structure” on page
7-63

• dfilt.calattice

• dfilt.calatticepc

• “Direct Form Symmetric FIR Filter Structure (Any Order)” on page 7-64

Starting from any quantized filter, you can convert to one of the following
representation:

• Direct form I

• Direct form II

• Direct form I transposed

• Direct form II transposed

• Lattice ARMA

Additionally, FDATool lets you do the following conversions:

• Minimum phase FIR filter to Lattice MA minimum phase

• Maximum phase FIR filter to Lattice MA maximum phase

• Allpass filters to Lattice allpass

Refer to “FilterStructure” on page 7-43 for details about each of these
structures.

Converting Filters to Second-Order Sections Form
To learn about using FDATool to convert your quantized filter to use
second-order sections, refer to “Converting to Second-Order Sections” in
your Signal Processing Toolbox documentation. You might notice that filters

4-26

Analyzing Filters with a Noise-Based Method

you design in FDATool, rather than filters you imported, are implemented
in SOS form.

To View Filter Structures in FDATool
To open the demonstration, click Help > Show filter structures. After the
Help browser opens, you see the reference page for the current filter. You find
the filter structure signal flow diagram on this reference page, or you can
navigate to reference pages for other filter.

4-27

4 Using FDATool with Filter Design Toolbox™ Software

Scaling Second-Order Section Filters

In this section...

“Using the Reordering and Scaling Second-Order Sections Dialog Box” on
page 4-28
“Example — Scale an SOS Filter” on page 4-30

Using the Reordering and Scaling Second-Order
Sections Dialog Box
FDATool provides the ability to scale SOS filters after you create them. Using
options on the Reordering and Scaling Second-Order Sections dialog box,
FDATool scales either or both the filter numerators and filter scale values
according to your choices for the scaling options.

4-28

Scaling Second-Order Section Filters

Parameter Description and Valid Value

Scale Apply any scaling options to the filter. Select this
when you are reordering your SOS filter and you
want to scale it at the same time. Or when you
are scaling your filter, with or without reordering.
Scaling is disabled by default.

No Overflow — High
SNR slider

Lets you set whether scaling favors reducing
arithmetic overflow in the filter or maximizing
the signal-to-noise ratio (SNR)) at the filter
output. Moving the slider to the right increases
the emphasis on SNR at the expense of possible
overflows. The markings indicate the P-norm
applied to achieve the desired result in SNR or
overflow protection. For more information about
the P-norm settings, refer to norm for details.

Maximum
Numerator

Maximum allowed value for numerator
coefficients after scaling.

Numerator
Constraint

Specifies whether and how to constrain numerator
coefficient values. Options are none, normalize,
power of 2, and unit. Choosing none lets the
scaling use any scale value for the numerators
by removing any constraints on the numerators,
except that the coefficients will be clipped if
they exceed the Maximum Numerator. With
Normalize the maximum absolute value of the
numerator is forced to equal the Maximum
Numerator value (for all other constraints,
the Maximum Numerator is only an upper
limit, above which coefficients will be clipped).
The power of 2 option forces scaling to use
numerator values that are powers of 2, such as 2
or 0.5. With unit, the leading coefficient of each
numerator is forced to a value of 1.

4-29

4 Using FDATool with Filter Design Toolbox™ Software

Parameter Description and Valid Value

Overflow Mode Sets the way the filter handles arithmetic
overflow situations during scaling. Choose
from either saturate (limit the output to the
largest positive or negative representable value)
or wrap (set overflowing values to the nearest
representable value using modular arithmetic.

Scale Value
Constraint

Specify whether to constrain the filter scale
values, and how to constrain them. Valid options
are unit, power of 2, and none. Choosing unit
for the constraint disables the Max. Scale
Value setting and forces scale values to equal
1. Power of 2 constrains the scale values to be
powers of 2, such as 2 or 0.5, while none removes
any constraint on the scale values, except that
they cannot exceed theMax. Scale Value.

Max. Scale Value Sets the maximum allowed scale values. SOS
filter scaling applies theMax. Scale Value limit
only when you set Scale Value Constraint to
a value other than unit (the default setting).
Setting a maximum scale value removes any
other limits on the scale values.

Revert to Original
Filter

Returns your filter to the original scaling. Being
able to revert to your original filter makes it
easier to assess the results of scaling your filter.

Various combinations of settings let you scale filter numerators without
changing the scale values, or adjust the filter scale values without changing
the numerators. There is no scaling control for denominators.

Example — Scale an SOS Filter
Start the process by designing a lowpass elliptical filter in FDATool.

1 Launch FDATool.

2 In Response Type, select Lowpass.

4-30

Scaling Second-Order Section Filters

3 In Design Method, select IIR and Elliptic from the IIR design methods
list.

4 Select Minimum Order for the filter.

5 Switch the frequency units by choosing Normalized(0 to 1) from the
Units list.

6 To set the passband specifications, enter 0.45 for wpass and 0.55 for
wstop. Finally, in Magnitude Specifications, set Astop to 60.

7 Click Design Filter to design the filter.

After FDATool finishes designing the filter, you see the following plot and
settings in the tool.

4-31

4 Using FDATool with Filter Design Toolbox™ Software

You kept the Options setting for Match exactly as both, meaning the
filter design matches the specification for the passband and the stopband.

8 To switch to scaling the filter, select Edit > Reorder and Scale
Second-Order Sections from the menu bar.

Your selection opens the Reordering and Scaling Second-Order
Sections dialog box shown here.

4-32

Scaling Second-Order Section Filters

9 To see the filter coefficients, return to FDATool and select Filter
Coefficients from the Analysis menu. FDATool displays the coefficients
and scale values in FDATool.

4-33

4 Using FDATool with Filter Design Toolbox™ Software

With the coefficients displayed you can see the effects of scaling your filter
directly in the scale values and filter coefficients.

Now try scaling the filter in a few different ways. First scale the filter to
maximize the SNR.

1 Return to the Reordering and Scaling Second-Order Sections dialog
box and select None for Reordering in the left pane. This prevents
FDATool from reordering the filter sections when you rescale the filter.

2 Move the No Overflow—High SNR slider from No Overflow to High
SNR.

3 Click Apply to scale the filter and leave the dialog box open.

After a few moments, FDATool updates the coefficients displayed so you
see the new scaling, as shown in the following figure.

4-34

Scaling Second-Order Section Filters

All of the scale factors are now 1, and the SOS matrix of coefficients shows
that none of the numerator coefficients are 1 and the first denominator
coefficient of each section is 1.

4 Click Revert to Original Filter to restore the filter to the original settings
for scaling and coefficients.

4-35

4 Using FDATool with Filter Design Toolbox™ Software

Reordering the Sections of Second-Order Section Filters

Switching FDATool to Reorder Filters
FDATool design most discrete-time filters in second-order sections. Generally,
SOS filters resist the effects of quantization changes when you create
fixed-point filters. After you have a second-order section filter in FDATool,
either one you designed in the tool, or one you imported, FDATool provides
the capability to change the order of the sections that compose the filter. Any
SOS filter in FDATool allows reordering of the sections.

To reorder the sections of a filter, you access the Reorder and Scaling of
Second-Order Sections dialog box in FDATool.

With your SOS filter in FDATool, select Edit > Reorder and Scale from
the menu bar. FDATool returns the reordering dialog box shown here with
the default settings.

4-36

Reordering the Sections of Second-Order Section Filters

Controls on the Reordering and Scaling of Second-Order Sections dialog box

In this dialog box, the left-hand side contains options for reordering SOS
filters. On the right you see the scaling options. These are independent —
reordering your filter does not require scaling (note the Scale option) and
scaling does not require that you reorder your filter (note the None option
under Reordering). For more about scaling SOS filters, refer to “Scaling
Second-Order Section Filters” on page 4-28 and to scale in the reference
section.

Reordering SOS filters involves using the options in the Reordering and
Scaling of Second-Order Sections dialog box. The following table lists
each reorder option and provides a description of what the option does.

4-37

4 Using FDATool with Filter Design Toolbox™ Software

Control Option Description

Auto Reorders the filter sections to minimize the output
noise power of the filter. Note that different
ordering applies to each specification type, such as
lowpass or highpass. Automatic ordering adapts to
the specification type of your filter.

None Does no reordering on your filter. Selecting
None lets you scale your filter without applying
reordering at the same time. When you access this
dialog box with a current filter, this is the default
setting — no reordering is applied.

Least selective
section to most
selective section

Rearranges the filter sections so the least
restrictive (lowest Q) section is the first section
and the most restrictive (highest Q) section is the
last section.

Most selective
section to least
selective section

Rearranges the filter sections so the most
restrictive (highest Q) section is the first section
and the least restrictive (lowest Q) section is the
last section.

Custom reordering Lets you specify the section ordering to use by
enabling the Numerator Order and Denominator
Order options

Numerator Order Specify new ordering for the sections of your SOS
filter. Enter a vector of the indices of the sections
in the order in which to rearrange them. For
example, a filter with five sections has indices 1,
2, 3, 4, and 5. To switch the second and fourth
sections, the vector would be [1,4,3,2,5].

Use Numerator
Order

Rearranges the denominators in the order assigned
to the numerators.

4-38

Reordering the Sections of Second-Order Section Filters

Control Option Description

Specify Lets you specify the order of the denominators,
rather than using the numerator order. Enter a
vector of the indices of the sections to specify the
order of the denominators to use. For example, a
filter with five sections has indices 1, 2, 3, 4, and
5. To switch the second and fourth sections, the
vector would be [1,4,3,2,5].

Use Numerator
Order

Reorders the scale values according to the order
of the numerators.

Specify Lets you specify the order of the scale values,
rather than using the numerator order. Enter a
vector of the indices of the sections to specify the
order of the denominators to use. For example, a
filter with five sections has indices 1, 2, 3, 4, and
5. To switch the second and fourth sections, the
vector would be [1,4,3,2,5].

Revert to Original
Filter

Returns your filter to the original section ordering.
Being able to revert to your original filter makes
comparing the results of changing the order of the
sections easier to assess.

Example — Reorder an SOS Filter
With FDATool open and a second-order filter as the current filter, you use the
following process to access the reordering capability and reorder you filter.
Start by launching FDATool from the command prompt.

1 Enter fdatool at the command prompt to launch FDATool.

2 Design a lowpass Butterworth filter with order 10 and the default frequency
specifications by entering the following settings:

• Under Response Type select Lowpass.

• Under Design Method, select IIR and Butterworth from the list.

• Specify the order equal to 10 in Specify order under Filter Order.

• Keep the default Fs and Fc values in Frequency Specifications.

4-39

4 Using FDATool with Filter Design Toolbox™ Software

3 Click Design Filter.

FDATool design the Butterworth filter and returns your filter as a
Direct-Form II filter implemented with second-order sections. You see the
specifications in the Current Filter Information area.

With the second-order filter in FDATool, reordering the filter uses the
Reordering and Scaling of Second-Order Sections feature in FDATool
(also available in Filter Visualization Tool, fvtool).

4 To reorder your filter, select Edit > Reorder and Scale Second-Order
Sections from the FDATool menus. FDATool opens the following dialog
box that controls reordering of the sections of your filter.

Now you are ready to reorder the sections of your filter. Note that FDATool
performs the reordering on the current filter in the session.

4-40

Reordering the Sections of Second-Order Section Filters

Use Least Selective to Most Selective Section Reordering
To let FDATool reorder your filter so the least selective section is first and the
most selective section is last, perform the following steps in the Reordering
and Scaling of Second-Order Sections dialog box.

1 In Reordering, select Least selective section to most selective
section.

2 To prevent filter scaling at the same time, clear Scale in Scaling.

3 In FDATool, select View > SOS View from the menu bar so you see the
sections of your filter displayed in FDATool.

4 In the SOS View dialog box, select Individual sections. Making this
choice configures FDATool to show the magnitude response curves for each
section of your filter in the analysis area.

5 Back in the Reordering and Scaling of Second-Order Sections dialog
box, click Apply to reorder your filter according to the Qs of the filter
sections, and keep the dialog box open. In response, FDATool presents
the responses for each filter section (there should be five sections) in the
analysis area.

4-41

4 Using FDATool with Filter Design Toolbox™ Software

In the next two figures you can compare the ordering of the sections of
your filter. In the first figure, your original filter sections appear. In the
second figure, the sections have been rearranged from least selective to
most selective.

You see what reordering does, although the result is a bit subtle. Now try
custom reordering the sections of your filter or using the most selective to
least selective reordering option.

4-42

Viewing SOS Filter Sections

Viewing SOS Filter Sections

In this section...

“Using the SOS View Dialog Box” on page 4-43
“Example — View the Sections of SOS Filters” on page 4-46

Using the SOS View Dialog Box
Since you can design and reorder the sections of SOS filters, FDATool provides
the ability to view the filter sections in the analysis area — SOS View. Once
you have a second-order section filter as your current filter in FDATool,
you turn on the SOS View option to see the filter sections individually, or
cumulatively, or even only some of the sections. Enabling SOS View puts
FDATool in a mode where all second-order section filters display sections until
you disable the SOS View option. SOS View mode applies to any analysis you
display in the analysis area. For example, if you configure FDATool to show
the phase responses for filters, enabling SOS View means FDATool displays
the phase response for each section of SOS filters.

Controls on the SOS View Dialog Box

SOS View uses a few options to control how FDATool displays the sections,
or which sections to display. When you select View > SOS View from the
FDATool menu bar, you see this dialog box containing options to configure
SOS View operation.

4-43

4 Using FDATool with Filter Design Toolbox™ Software

By default, SOS View shows the overall response of SOS filters. Options in
the SOS View dialog box let you change the display. This table lists all the
options and describes the effects of each.

Option Description

Overall Filter This is the familiar display in FDATool. For
a second-order section filter you see only the
overall response rather than the responses for
the individual sections. This is the default
configuration.

Individual sections When you select this option, FDATool displays
the response for each section as a curve.
If your filter has five sections you see five
response curves, one for each section, and they
are independent. Compare to Cumulative
sections.

4-44

Viewing SOS Filter Sections

Option Description

Cumulative sections When you select this option, FDATool
displays the response for each section as the
accumulated response of all prior sections in
the filter. If your filter has five sections you see
five response curves:

• The first curve plots the response for the
first filter section.

• The second curve plots the response for the
combined first and second sections.

• The third curve plots the response for the
first, second, and third sections combined.

And so on until all filter sections appear in the
display. The final curve represents the overall
filter response. Compare to Cumulative
sections and Overall Filter.

4-45

4 Using FDATool with Filter Design Toolbox™ Software

Option Description

User defined Here you define which sections to display, and
in which order. Selecting this option enables
the text box where you enter a cell array of
the indices of the filter sections. Each index
represents one section. Entering one index
plots one response. Entering something like
{1:2} plots the combined response of sections 1
and 2. If you have a filter with four sections,
the entry {1:4} plots the combined response for
all four sections, whereas {1,2,3,4} plots the
response for each section. Note that after you
enter the cell array, you need to click OK or
Apply to update the FDATool analysis area to
the new SOS View configuration.

Use secondary-scaling
points

This directs FDATool to use the secondary
scaling points in the sections to determine
where to split the sections. This option applies
only when the filter is a df2sos or df1tsos
filter. For these structures, the secondary
scaling points refer to the scaling locations
between the recursive and the nonrecursive
parts of the section (the "middle" of the section).
By default, secondary-scaling points is not
enabled. You use this with the Cumulative
sections option only.

Example — View the Sections of SOS Filters
After you design or import an SOS filter in to FDATool, the SOS view option
lets you see the per section performance of your filter. Enabling SOS View
from the View menu in FDATool configures the tool to display the sections of
SOS filters whenever the current filter is an SOS filter.

These next steps demonstrate using SOS View to see your filter sections
displayed in FDATool.

1 Launch FDATool.

4-46

Viewing SOS Filter Sections

2 Create a lowpass SOS filter using the Butterworth design method. Specify
the filter order to be 6. Using a low order filter makes seeing the sections
more clear.

3 Design your new filter by clicking Design Filter.

FDATool design your filter and show you the magnitude response in the
analysis area. In Current Filter Information you see the specifications for
your filter. You should have a sixth-order Direct-Form II, Second-Order
Sections filter with three sections.

4 To enable SOS View, select View > SOS View from the menu bar.

Now you see the SOS View dialog box in FDATool. Options here let you
specify how to display the filter sections.

By default the analysis area in FDATool shows the overall filter response,
not the individual filter section responses. This dialog box lets you change
the display configuration to see the sections.

5 To see the magnitude responses for each filter section, select Individual
sections.

4-47

4 Using FDATool with Filter Design Toolbox™ Software

6 Click Apply to update FDATool to display the responses for each filter
section. The analysis area changes to show you something like the
following figure.

If you switch FDATool to display filter phase responses, you see the phase
response for each filter section in the analysis area.

7 To define your own display of the sections, you use the User defined
option and enter a vector of section indices to display. Now you see a

4-48

Viewing SOS Filter Sections

display of the first section response, and the cumulative first, second, and
third sections response:

• Select User defined to enable the text entry box in the dialog box.

• Enter the cell array {1,1:3} to specify that FDATool should display the
response of the first section and the cumulative response of the first
three sections of the filter.

8 To apply your new SOS View selection, click Apply or OK (which closes
the SOS View dialog box).

In the FDATool analysis area you see two curves — one for the response
of the first filter section and one for the combined response of sections 1,
2, and 3.

4-49

4 Using FDATool with Filter Design Toolbox™ Software

Importing and Exporting Quantized Filters

In this section...

“Overview and Structures” on page 4-50
“Example — Import Quantized Filters” on page 4-51
“To Export Quantized Filters” on page 4-52

Overview and Structures
When you import a quantized filter into FDATool, or export a quantized filter
from FDATool to your workspace, the import and export functions use objects
and you specify the filter as a variable. This contrasts with importing and
exporting nonquantized filters, where you select the filter structure and enter
the filter numerator and denominator for the filter transfer function.

You have the option of exporting quantized filters to your MATLAB
workspace, exporting them to text files, or exporting them to MAT-files.

For general information about importing and exporting filters in FDATool,
refer to “FDATool: A Filter Design and Analysis GUI” in the Signal Processing
Toolbox User’s Guide.

FDATool imports quantized filters having the following structures:

• Direct form I

• Direct form II

• Direct form I transposed

• Direct form II transposed

• Direct form symmetric FIR

• Direct form antisymmetric FIR

• Lattice allpass

• Lattice AR

• Lattice MA minimum phase

4-50

Importing and Exporting Quantized Filters

• Lattice MA maximum phase

• Lattice ARMA

• Lattice coupled-allpass

• Lattice coupled-allpass power complementary

Example — Import Quantized Filters
After you design or open a quantized filter in your MATLAB workspace,
FDATool lets you import the filter for analysis. Follow these steps to import
your filter in to FDATool:

1 Open FDATool.

2 Select Filter > Import Filter from the menu bar.

In the lower region of FDATool, the Design Filter pane becomes Import
Filter, and options appear for importing quantized filters, as shown.

3 From the Filter Structure list, select Filter object.

The options for importing filters change to include:

• Discrete filter — Enter the variable name for the discrete-time,
fixed-point filter in your workspace.

4-51

4 Using FDATool with Filter Design Toolbox™ Software

• Frequency units — Select the frequency units from the Units list
under Sampling Frequency, and specify the sampling frequency value
in Fs if needed. Your sampling frequency must correspond to the units
you select. For example, when you select Normalized (0 to 1), Fs
defaults to one. But if you choose one of the frequency options, enter the
sampling frequency in your selected units. If you have the sampling
frequency defined in your workspace as a variable, enter the variable
name for the sampling frequency.

4 Click Import to import the filter.

FDATool checks your workspace for the specified filter. It imports the filter
if it finds it, displaying the magnitude response for the filter in the analysis
area. If it cannot find the filter it returns an FDATool Error dialog box.

Note If, during any FDATool session, you switch to quantization mode and
create a fixed-point filter, FDATool remains in quantization mode. If you
import a double-precision filter, FDATool automatically quantizes your
imported filter applying the most recent quantization parameters.
When you check the current filter information for your imported filter, it
will indicate that the filter is Source: imported (quantized) even though
you did not import a quantized filter.

To Export Quantized Filters
To save your filter design, FDATool lets you export the quantized filter to
your MATLAB workspace (or you can save the current session in FDATool).
When you choose to save the quantized filter by exporting it, you select one
of these options:

• Export to your MATLAB workspace

• Export to a text file

• Export to a MAT-file

Example — Export Coefficients or Objects to the Workspace
You can save the filter as filter coefficients variables or as a dfilt filter object
variable. To save the filter to the MATLAB workspace:

4-52

Importing and Exporting Quantized Filters

1 Select Export from the File menu. The Export dialog box appears.

2 Select Workspace from the Export To list.

3 Select Coefficients from the Export As list to save the filter coefficients
or select Objects to save the filter in a filter object.

4 For coefficients, assign variable names using the Numerator and
Denominator options under Variable Names. For objects, assign
the variable name in the Discrete or Quantized filter option. If you
have variables with the same names in your workspace and you want to
overwrite them, select the Overwrite Variables box.

5 Click the OK button

If you try to export the filter to a variable name that exists in your
workspace, and you did not select Overwrite existing variables,
FDATool stops the export operation and returns a warning that the
variable you specified as the quantized filter name already exists in the
workspace. To continue to export the filter to the existing variable, click
OK to dismiss the warning dialog box, select the Overwrite existing
variables check box and click OK or Apply.

Getting Filter Coefficients After Exporting
To extract the filter coefficients from your quantized filter after you export
the filter to MATLAB, use the celldisp function in MATLAB. For example,
create a quantized filter in FDATool and export the filter as Hq. To extract the
filter coefficients for Hq, use

celldisp(Hq.referencecoefficients)

which returns the cell array containing the filter reference coefficients, or

celldisp(Hq.quantizedcoefficients

to return the quantized coefficients.

Example — Exporting as a Text File
To save your quantized filter as a text file, follow these steps:

4-53

4 Using FDATool with Filter Design Toolbox™ Software

1 Select Export from the File menu.

2 Select Text-file under Export to.

3 Click OK to export the filter and close the dialog box. Click Apply to
export the filter without closing the Export dialog box. Clicking Apply lets
you export your quantized filter to more than one name without leaving
the Export dialog box.

The Export Filter Coefficients to Text-file dialog box appears. This is
the standard Microsoft Windows save file dialog box.

4 Choose or enter a directory and filename for the text file and click OK.

FDATool exports your quantized filter as a text file with the name you
provided, and the MATLAB editor opens, displaying the file for editing.

Example — Exporting as a MAT-File
To save your quantized filter as a MAT-file, follow these steps:

1 Select Export from the File menu.

2 Select MAT-file under Export to.

3 Assign a variable name for the filter.

4 Click OK to export the filter and close the dialog box. Click Apply to
export the filter without closing the Export dialog box. Clicking Apply lets
you export your quantized filter to more than one name without leaving
the Export dialog box.

The Export Filter Coefficients to MAT-file dialog box appears. This is
the standard Microsoft Windows save file dialog box.

5 Choose or enter a directory and filename for the text file and click OK.

FDATool exports your quantized filter as a MAT-file with the specified
name.

4-54

Importing XILINX Coefficient (.COE) Files

Importing XILINX Coefficient (.COE) Files

Example — Import XILINX .COE Files
You can import XILINX coefficients (.coe) files into FDATool to create
quantized filters directly using the imported filter coefficients.

To use the import file feature:

1 Select File > Import Filter From XILINX Coefficient (.COE) File in
FDATool.

2 In the Import Filter From XILINX Coefficient (.COE) File dialog box,
find and select the .coe file to import.

3 Click Open to dismiss the dialog box and start the import process.

FDATool imports the coefficient file and creates a quantized, single-section,
direct-form FIR filter.

4-55

4 Using FDATool with Filter Design Toolbox™ Software

Transforming Filters

In this section...

“FDATool Filter Transformation Capabilities” on page 4-56
“Original Filter Type” on page 4-57
“Frequency Point to Transform” on page 4-61
“Transformed Filter Type” on page 4-62
“Specify Desired Frequency Location” on page 4-62

FDATool Filter Transformation Capabilities
The toolbox provides functions for transforming filters between various forms.
When you use FDATool with the toolbox installed, a side bar button and a
menu bar option enable you to use the Transform Filter panel to transform
filters as well as using the command line functions.

From the selection on the FDATool menu bar — Transformations — you
can transform lowpass FIR and IIR filters to a variety of passband shapes.

You can convert your FIR filters from:

• Lowpass to lowpass.

• Lowpass to highpass.

For IIR filters, you can convert from:

• Lowpass to lowpass.

• Lowpass to highpass.

• Lowpass to bandpass.

• Lowpass to bandstop.

When you click the Transform Filter button, , on the side bar, the
Transform Filter panel opens in FDATool, as shown here.

4-56

Transforming Filters

Your options for Original filter type refer to the type of your current filter
to transform. If you select lowpass, you can transform your lowpass filter
to another lowpass filter or to a highpass filter, or to numerous other filter
formats, real and complex.

Note When your original filter is an FIR filter, both the FIR and IIR
transformed filter type options appear on the Transformed filter type list.
Both options remain active because you can apply the IIR transforms to
an FIR filter. If your source is as IIR filter, only the IIR transformed filter
options show on the list.

Original Filter Type
Select the magnitude response of the filter you are transforming from the list.
Your selection changes the types of filters you can transform to. For example:

• When you select Lowpass with an IIR filter, your transformed filter type
can be

- Lowpass

- Highpass

- Bandpass

- Bandstop

- Multiband

4-57

4 Using FDATool with Filter Design Toolbox™ Software

- Bandpass (complex)

- Bandstop (complex)

- Multiband (complex)

• When you select Lowpass with an FIR filter, your transformed filter
type can be

- Lowpass

- Lowpass (FIR)

- Highpass

- Highpass (FIR) narrowband

- Highpass (FIR) wideband

- Bandpass

- Bandstop

- Multiband

- Bandpass (complex)

- Bandstop (complex)

- Multiband (complex)

In the following table you see each available original filter type and all the
types of filter to which you can transform your original.

4-58

Transforming Filters

Original Filter Available Transformed Filter Types

Lowpass FIR • Lowpass

• Lowpass (FIR)

• Highpass

• Highpass (FIR) narrowband

• Highpass (FIR) wideband

• Bandpass

• Bandstop

• Multiband

• Bandpass (complex)

• Bandstop (complex)

• Multiband (complex)
Lowpass IIR • Lowpass

• Highpass

• Bandpass

• Bandstop

• Multiband

• Bandpass (complex)

• Bandstop (complex)

• Multiband (complex)

4-59

4 Using FDATool with Filter Design Toolbox™ Software

Original Filter Available Transformed Filter Types

Highpass FIR • Lowpass

• Lowpass (FIR) narrowband

• Lowpass (FIR) wideband

• Highpass (FIR)

• Highpass

• Bandpass

• Bandstop

• Multiband

• Bandpass (complex)

• Bandstop (complex)

• Multiband (complex)
Highpass IIR • Lowpass

• Highpass

• Bandpass

• Bandstop

• Multiband

• Bandpass (complex)

• Bandstop (complex)

• Multiband (complex)
Bandpass FIR • Bandpass

• Bandpass (FIR)
Bandpass IIR Bandpass
Bandstop FIR • Bandstop

• Bandstop (FIR)
Bandstop IIR Bandstop

4-60

Transforming Filters

Note also that the transform options change depending on whether your
original filter is FIR or IIR. Starting from an IIR filter, you can transform to
IIR or FIR forms. With an IIR original filter, you are limited to IIR target
filters.

After selecting your response type, use Frequency point to transform to
specify the magnitude response point in your original filter to transfer to
your target filter. Your target filter inherits the performance features of your
original filter, such as passband ripple, while changing to the new response
form.

For more information about transforming filters, refer to “Frequency
Transformations for Real Filters” on page 3-11 and “Frequency
Transformations for Complex Filters” on page 3-26.

Frequency Point to Transform
The frequency point you enter in this field identifies a magnitude response
value (in dB) on the magnitude response curve.

When you enter frequency values in the Specify desired frequency
location option, the frequency transformation tries to set the magnitude
response of the transformed filter to the value identified by the frequency
point you enter in this field.

While you can enter any location, generally you should specify a filter
passband or stopband edge, or a value in the passband or stopband.

The Frequency point to transform sets the magnitude response at the
values you enter in Specify desired frequency location. Specify a value
that lies at either the edge of the stopband or the edge of the passband.

If, for example, you are creating a bandpass filter from a highpass filter, the
transformation algorithm sets the magnitude response of the transformed
filter at the Specify desired frequency location to be the same as the
response at the Frequency point to transform value. Thus you get a
bandpass filter whose response at the low and high frequency locations is the
same. Notice that the passband between them is undefined. In the next two
figures you see the original highpass filter and the transformed bandpass
filter.

4-61

4 Using FDATool with Filter Design Toolbox™ Software

For more information about transforming filters, refer to Chapter 3, “Digital
Frequency Transformations”.

Transformed Filter Type
Select the magnitude response for the target filter from the list. The complete
list of transformed filter types is:

• Lowpass

• Lowpass (FIR)

• Highpass

• Highpass (FIR) narrowband

• Highpass (FIR) wideband

• Bandpass

• Bandstop

• Multiband

• Bandpass (complex)

• Bandstop (complex)

• Multiband (complex)

Not all types of transformed filters are available for all filter types on the
Original filter types list. You can transform bandpass filters only to
bandpass filters. Or bandstop filters to bandstop filters. Or IIR filters to
IIR filters.

For more information about transforming filters, refer to “Frequency
Transformations for Real Filters” on page 3-11 and “Frequency
Transformations for Complex Filters” on page 3-26.

Specify Desired Frequency Location
The frequency point you enter in Frequency point to transform matched
a magnitude response value. At each frequency you enter here, the
transformation tries to make the magnitude response the same as the
response identified by your Frequency point to transform value.

4-62

Transforming Filters

While you can enter any location, generally you should specify a filter
passband or stopband edge, or a value in the passband or stopband.

For more information about transforming filters, refer to Chapter 3, “Digital
Frequency Transformations”.

Example — Transform Filters
To transform the magnitude response of your filter, use the Transform
Filter option on the side bar.

1 Design or import your filter into FDATool.

2 Click Transform Filter, , on the side bar.

FDATool opens the Transform Filter panel in FDATool.

3 From the Original filter type list, select the response form of the filter
you are transforming.

When you select the type, whether is lowpass, highpass, bandpass, or
bandstop, FDATool recognizes whether your filter form is FIR or IIR.
Using both your filter type selection and the filter form, FDATool adjusts
the entries on the Transformed filter type list to show only those that
apply to your original filter.

4-63

4 Using FDATool with Filter Design Toolbox™ Software

4 Enter the frequency point to transform value in Frequency point to
transform. Notice that the value you enter must be in KHz; for example,
enter 0.1 for 100 Hz or 1.5 for 1500 Hz.

5 From the Transformed filter type list, select the type of filter you want
to transform to.

Your filter type selection changes the options here.

• When you pick a lowpass or highpass filter type, you enter one value in
Specify desired frequency location.

• When you pick a bandpass or bandstop filter type, you enter two values
— one in Specify desired low frequency location and one in Specify
desired high frequency location. Your values define the edges of
the passband or stopband.

• When you pick a multiband filter type, you enter values as elements in a
vector in Specify a vector or desired frequency locations — one element
for each desired location. Your values define the edges of the passbands
and stopbands.

After you click Transform Filter, FDATool transforms your filter,
displays the magnitude response of your new filter, and updates the
Current Filter Information to show you that your filter has been
transformed. In the filter information, the Source is Transformed.

For example, the figure shown here includes the magnitude response
curves for two filter. The original filter is a lowpass filter with rolloff
between 0.2 and 0.25. The transformed filter is a lowpass filter with
rolloff region between 0.8 and 0.85.

4-64

Transforming Filters

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−120

−100

−80

−60

−40

−20

0

20

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Magnitude Response

Filter #1: Original Lowpass filter response
Filter #2: Transformed Lowpass Filter Response

• To transform your lowpass filter to a highpass filter, select Lowpass to
Highpass.

When you select Lowpass to Highpass, FDATool returns the dialog
box shown here. More information about the Select Transform...
dialog box follows the figure.

4-65

4 Using FDATool with Filter Design Toolbox™ Software

To demonstrate the effects of selecting Narrowband Highpass or
Wideband Highpass, the next figure presents the magnitude response
curves for a source lowpass filter after it is transformed to both narrow-
and wideband highpass filters. For comparison, the response of the
original filter appears as well.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−120

−100

−80

−60

−40

−20

0

20

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Magnitude Response

Filter #1:Original Lowpass Filter Response
Filter #2:Narrowband Highpass Filter Response
Filter #3: Wideband Highpass Filter Response

For the narrowband case, the transformation algorithm essentially
reverses the magnitude response, like reflecting the curve around the
y-axis, then translating the curve to the right until the origin lies at 1
on the x-axis. After reflecting and translating, the passband at high
frequencies is the reverse of the passband of the original filter at low
frequencies with the same rolloff and ripple characteristics.

4-66

Designing Multirate Filters in FDATool

Designing Multirate Filters in FDATool

In this section...

“Introduction” on page 4-67
“Switching FDATool to Multirate Filter Design Mode” on page 4-67
“Controls on the Multirate Design Panel” on page 4-68
“Quantizing Multirate Filters” on page 4-79
“Exporting the Individual Phase Coefficients of a Polyphase Filter to the
Workspace” on page 4-81

Introduction
Not only can you design multirate filters from the MATLAB command prompt,
FDATool provides the same design capability in a graphical user interface
tool. By starting FDATool and switching to the multirate filter design mode
you have access to all of the multirate design capabilities in the toolbox —
decimators, interpolators, and fractional rate changing filters, among others.

Switching FDATool to Multirate Filter Design Mode
The multirate filter design mode in FDATool lets you specify and design a
wide range of multirate filters, including decimators and interpolators.

With FDATool open, click Create a Multirate Filter, , on the side bar.
You see FDATool switch to the design mode showing the multirate filter
design options. Shown in the following figure is the default multirate design
configuration that designs an interpolating filter with an interpolation factor
of 2. The design uses the current FIR filter in FDATool.

4-67

4 Using FDATool with Filter Design Toolbox™ Software

When the current filter in FDATool is not an FIR filter, the multirate filter
design panel removes the Use current FIR filter option and selects the Use
default Nyquist FIR filter option instead as the default setting.

Controls on the Multirate Design Panel
You see the options that allow you to design a variety of multirate filters. The
Type option is your starting point. From this list you select the multirate
filter to design. Based on your selection, other options change to provide the
controls you need to specify your filter.

4-68

Designing Multirate Filters in FDATool

Notice the separate sections of the design panel. On the left is the filter type
area where you choose the type of multirate filter to design and set the filter
performance specifications.

In the center section FDATool provides choices that let you pick the filter
design method to use.

The rightmost section offers options that control filter configuration when you
select Cascaded-Integrator Comb (CIC) as the design method in the center
section. Both the Decimator type and Interpolator type filters let you use
the Cascaded-Integrator Comb (CIC) option to design multirate filters.

Here are all the options available when you switch to multirate filter design
mode. Each option listed includes a brief description of what the option does
when you use it.

4-69

4 Using FDATool with Filter Design Toolbox™ Software

Selecting and Configuring Your Filter

Option Description

Type Specifies the type of multirate filter to design.
Choose from Decimator, Interpolator, or
Fractional-rate convertor.

• When you choose Decimator, set Decimation
Factor to specify the decimation to apply.

• When you choose Interpolator, set
Interpolation Factor to specify the
interpolation amount applied.

• When you choose Fractional-rate convertor,
set both Interpolation Factor and Decimation
Factor. FDATool uses both to determine the
fractional rate change by dividing Interpolation
Factor by Decimation Factor to determine
the fractional rate change in the signal. You
should select values for interpolation and
decimation that are relatively prime. When
your interpolation factor and decimation factor
are not relatively prime, FDATool reduces
the interpolation/decimation fractional rate to
the lowest common denominator and issues
a message in the status bar in FDATool. For
example, if the interpolation factor is 6 and the
decimation factor is 3, FDATool reduces 6/3 to
2/1 when you design the rate changer. But if the
interpolation factor is 8 and the decimation factor
is 3, FDATool designs the filter without change.

Interpolation
Factor

Use the up-down control arrows to specify the
amount of interpolation to apply to the signal.
Factors range upwards from 2.

Decimation Factor Use the up-down control arrows to specify the
amount of decimation to apply to the signal. Factors
range upwards from 2.

4-70

Designing Multirate Filters in FDATool

Selecting and Configuring Your Filter (Continued)

Option Description

Sampling
Frequency

No settings here. Just Units and Fs below.

Units Specify whether Fs is specified in Hz, kHz, MHz, GHz,
or Normalized (0 to 1) units.

Fs Set the full scale sampling frequency in the
frequency units you specified in Units. When you
select Normalized for Units, you do not enter a
value for Fs.

Designing Your Filter

Option Description

Use current FIR
filter

Directs FDATool to use the current FIR filter to
design the multirate filter. If the current filter is an
IIR form, you cannot select this option. You cannot
design multirate filters with IIR structures.

Use a default
Nyquist Filter

Tells FDATool to use the default Nyquist design
method when the current filter in FDATool is not
an FIR filter.

Cascaded
Integrator-Comb
(CIC)

Design CIC filters using the options provided in the
right-hand area of the multirate design panel.

4-71

4 Using FDATool with Filter Design Toolbox™ Software

Designing Your Filter (Continued)

Option Description

Hold Interpolator
(Zero-order)

When you design an interpolator, you can specify
how the filter sets interpolated values between
signal values. When you select this option, the
interpolator applies the most recent signal value for
each interpolated value until it processes the next
signal value. This is similar to sample-and-hold
techniques. Compare to the Linear Interpolator
option.

Linear Interpolator
(First-order)

When you design an interpolator, you can specify
how the filter sets interpolated values between
signal values. When you select this option, the
interpolator applies linear interpolation between
signal value to set the interpolated value until it
processes the next signal value. Compare to the
Linear Interpolator option.

To see the difference between hold interpolation and linear interpolation, the
following figure presents a sine wave signal s1 in three forms:

• The top subplot in the figure presents signal s1 without interpolation.

• The middle subplot shows signal s1 interpolated by a linear interpolator
with an interpolation factor of 5.

• The bottom subplot shows signal s1 interpolated by a hold interpolator with
an interpolation factor of 5.

You see in the bottom figure the sample and hold nature of hold interpolation,
and the first-order linear interpolation applied by the linear interpolator.

4-72

Designing Multirate Filters in FDATool

1 2 3 4 5 6 7 8 9 10
−1

−0.5

0

0.5

1
Uninterpolated Signal s1

0 5 10 15 20 25 30 35 40 45 50
−1

−0.5

0

0.5

1
First−Order Linear Interpolation By 5 of Signal s1

0 5 10 15 20 25 30 35 40 45 50
−1

−0.5

0

0.5

1

Samples

Zero−Order Hold Interpolation By 5 of Signal s1

We used FDATool to create interpolators similar to the following code for
the figure:

• Linear interpolator — hm=mfilt.linearinterp(5)

• Hold interpolator — hm=mfilt.holdinterp(5)

Options for Designing CIC
Filters Description

Differential Delay Sets the differential delay for the CIC filter. Usually a value
of one or two is appropriate.

Number of Sections Specifies the number of sections in a CIC decimator. The default
number of sections is 2 and the range is any positive integer.

4-73

4 Using FDATool with Filter Design Toolbox™ Software

Example — Design a Fractional Rate Convertor
To introduce the process you use to design a multirate filter in FDATool, this
example uses the options to design a fractional rate convertor which uses
7/3 as the fractional rate. Begin the design by creating a default lowpass
FIR filter in FDATool. You do not have to begin with this FIR filter, but the
default filter works fine.

1 Launch FDATool.

2 Select the settings for a minimum-order lowpass FIR filter, using the
Equiripple design method.

3 When FDATool displays the magnitude response for the filter, click in
the side bar. FDATool switches to multirate filter design mode, showing
the multirate design panel, shown in the following figure.

4-74

Designing Multirate Filters in FDATool

4 To design a fractional rate filter, select Fractional-rate convertor
from the Type list. The Interpolation Factor and Decimation Factor
options become available.

5 In Interpolation Factor, use the up arrow to set the interpolation factor
to 7.

6 Using the up arrow in Decimation Factor, set 3 as the decimation factor.

7 Select Use a default Nyquist FIR filter. You could design the rate
convertor with the current FIR filter as well.

4-75

4 Using FDATool with Filter Design Toolbox™ Software

8 Enter 24000 to set Fs.

9 Click Create Multirate Filter.

After designing the filter, FDATool returns with the specifications for
your new filter displayed in Current Filter Information, and shows
the magnitude response of the filter.

You can test the filter by exporting it to your workspace and using it to filter
a signal. For information about exporting filters, refer to “Importing and
Exporting Quantized Filters” on page 4-50.

4-76

Designing Multirate Filters in FDATool

Example — Design a CIC Decimator for 8 Bit Input/Output Data
Another kind of filter you can design in FDATool is Cascaded-Integrator
Comb (CIC) filters. FDATool provides the options needed to configure your
CIC to meet your needs.

1 Launch FDATool and design the default FIR lowpass filter. Designing a
filter at this time is an optional step.

2 Switch FDATool to multirate design mode by clicking on the side bar.

3 For Type, select Decimator, and set Decimation Factor to 3.

4 To design the decimator using a CIC implementation, select
Cascaded-Integrator Comb (CIC). This enables the CIC-related options
on the right of the panel.

5 Set Differential Delay to 2. Generally, 1 or 2 are good values to use.

6 Enter 2 for the Number of Sections. Settings in the multirate design
panel should look like this.

7 Click Create Multirate Filter.

FDATool designs the filter, shows the magnitude response in the analysis
area, and updates the current filter information to show that you designed
a tenth-order cascaded-integrator comb decimator with two sections. Notice

4-77

4 Using FDATool with Filter Design Toolbox™ Software

the source is Multirate Design, indicating you used the multirate design
mode in FDATool to make the filter. FDATool should look like this now.

Designing other multirate filters follows the same pattern.

To design other multirate filters, do one of the following depending on the
filter to design:

• To design an interpolator, select one of these options.

- Use a default Nyquist FIR filter

- Cascaded-Integrator Comb (CIC)

4-78

Designing Multirate Filters in FDATool

- Hold Interpolator (Zero-order)

- Linear Interpolator (First-order)

• To design a decimator, select from these options.

- Use a default Nyquist FIR filter

- Cascaded-Integrator Comb (CIC)

• To design a fractional-rate convertor, select Use a default Nyquist FIR
filter.

Quantizing Multirate Filters
After you design a multirate filter in FDATool, the quantization features
enable you to convert your floating-point multirate filter to fixed-point
arithmetic.

Note CIC filters are always fixed-point.

With your multirate filter as the current filter in FDATool, you can quantize
your filter and use the quantization options to specify the fixed-point
arithmetic the filter uses.

To Quantize and Configure Multirate Filters
Follow these steps to convert your multirate filter to fixed-point arithmetic
and set the fixed-point options.

1 Design or import your multirate filter and make sure it is the current filter
in FDATool.

2 Click the Set Quantization Parameters button on the side bar.

3 From the Filter Arithmetic list on the Filter Arithmetic pane, select
Fixed-point. If your filter is a CIC filter, the Fixed-point option is
enabled by default and you do not set this option.

4 In the quantization panes, set the options for your filter. Set options for
Coefficients, Input/Output, and Filter Internals.

4-79

4 Using FDATool with Filter Design Toolbox™ Software

5 Click Apply.

When you current filter is a CIC filter, the options on the Input/Output and
Filter Internals panes change to provide specific features for CIC filters.

Input/Output
The options that specify how your CIC filter uses input and output values
are listed in the table below.

Option Name Description

Input Word Length Sets the word length used to represent the input to
a filter.

Input fraction
length

Sets the fraction length used to interpret input
values to filter.

Input range (+/-) Lets you set the range the inputs represent. You
use this instead of the Input fraction length
option to set the precision. When you enter a value
x, the resulting range is -x to x. Range must be a
positive integer.

Output word length Sets the word length used to represent the output
from a filter.

Avoid overflow Directs the filter to set the fraction length for the
input to prevent the output values from exceeding
the available range as defined by the word length.
Clearing this option lets you set Output fraction
length.

Output fraction length Sets the fraction length used to represent output
values from a filter.

Output range (+/-) Lets you set the range the outputs represent. You
use this instead of the Output fraction length
option to set the precision. When you enter a value
x, the resulting range is -x to x. Range must be a
positive integer.

4-80

Designing Multirate Filters in FDATool

The available options change when you change the Filter precision setting.
Moving from Full to Specify all adds increasing control by enabling more
input and output word options.

Filter Internals
With a CIC filter as your current filter, the Filter precision option on the
Filter Internals pane includes modes for controlling the filter word and
fraction lengths.

There are four usage modes for this (the same mode you select for the
FilterInternals property in CIC filters at the MATLAB prompt).

• Full— All word and fraction lengths set to Bmax + 1, called Baccum by Harris
in [2]. Full Precision is the default setting.

• Minimum section word lengths — Set the section word lengths to
minimum values that meet roundoff noise and output requirements as
defined by Hogenauer in [3].

• Specify word lengths — Enables the Section word length option for
you to enter word lengths for each section. Enter either a scalar to use the
same value for every section, or a vector of values, one for each section.

• Specify all— Enables the Section fraction length option in addition
to Section word length. Now you can provide both the word and fraction
lengths for each section, again using either a scalar or a vector of values.

Exporting the Individual Phase Coefficients of a
Polyphase Filter to the Workspace
After designing a polyphase filter in Filter Design Analysis Tool (FDATool),
you can obtain the individual phase coefficients of the filter by:

1 Exporting the filter to an object in the MATLAB workspace.

2 Using the polyphase method to create a matrix of the filter’s coefficients.

Exporting the Polyphase Filter to an Object
To export a polyphase filter to an object in the MATLAB workspace, complete
the following steps.

4-81

4 Using FDATool with Filter Design Toolbox™ Software

1 In FDATool, open the File menu and select Export.... This opens the
dialog box for exporting the filter coefficients.

2 In the Export dialog box, for Export To, selectWorkspace.

3 For Export As, select Object.

4 (Optional) For Variable Names, enter the name of the Multirate Filter
object that will be created in the MATLAB workspace.

5 Click the Export button. The multirate filter object, Hm in this example,
appears in the MATLAB workspace.

4-82

Designing Multirate Filters in FDATool

Using polyphase() to Create a Matrix of Coefficients
To create a matrix of the filter’s coefficients, enter p=polyphase(Hm) at the
command line. The polyphase method creates a matrix, p, of filter coefficients
from the filter object, Hm. Each row of p consists of the coefficients of an
individual phase subfilter. The first row contains to the coefficients of the first
phase subfilter, the second row contains those of the second phase subfilter,
and so on.

4-83

4 Using FDATool with Filter Design Toolbox™ Software

Realizing Filters as Simulink Subsystem Blocks

In this section...

“Introduction” on page 4-84
“About the Realize Model Panel in FDATool” on page 4-84

Introduction
After you design or import a filter in FDATool, the realize model feature lets
you create a Simulink subsystem block that implements your filter. The
generated filter subsystem block uses either the Digital Filter block or the
delay, gain, and sum blocks in Simulink. If you do not own Simulink® Fixed
Point™software, FDATool still realizes your model using blocks in fixed-point
mode from Simulink, but you cannot run any model that includes your filter
subsystem block in Simulink.

About the Realize Model Panel in FDATool
Switching FDATool to realize model mode, by clicking on the sidebar,
gives you access to the Realize Model panel and the options for realizing your
quantized filter as a Simulink subsystem block.

On the panel, as shown here, are the options provided for configuring how
FDATool realizes your model.

4-84

Realizing Filters as Simulink® Subsystem Blocks

Model Options
Under Model, you set options that direct FDATool where to put your new
subsystem block and what to name the block.

Destination. Tells FDATool whether to put the new block in your current
Simulink model or open a new Simulink model and add the block to that
window. Select Current model to add the block to your current model, or
select New model to create a new model for the block.

Block name. Provides FDATool with a name to assign to your block. When
you realize your filter as a subsystem, the resulting block shows the name you
enter here as the block name, positioned below the block.

Overwrite block. Directs FDATool whether to overwrite an existing block
with this block in the destination model. The result is that the new filter
realization subsystem block replaces the existing filter subsystem block.
Selecting this option replaces your existing filter realization subsystem block
with the one you create when you click Realize Model. Clearing Overwrite
block causes FDATool to create a new block in the destination model, rather
than replacing the existing block.

Build block using basic elements. You can determine how FDATool
models the specified filter using this check box. When you select this check
box, FDATool creates a subsystem block that implements your filter using
Sum, Gain, and Delay blocks. When you clear this check box, FDATool uses a
Digital Filter block to implement your filter. Filters that you realize with the
Digital Filter block accept sample-based, vector, or frame-based input.

The Build model using basic elements check box is available only when
your filter can be implemented using a Digital Filter block.

Note Filters that use only basic elements accept individual sample-based
input, not input vectors or frames. The mathematics of filtering a frame-based
input signal with a filter constructed of basic blocks involves an algebraic
loop that Simulink cannot solve. If your input data is in frames, consider
unbuffering the input, converting the frames to sample-by-sample input in
some other way, or clearing the Build block using basic elements option to
implement your filter with the Digital Filter block.

4-85

4 Using FDATool with Filter Design Toolbox™ Software

Optimization Options
Four options enable you to tailor the way the realized model optimizes various
filter features such as delays and gains. When you open the Realize Model
panel, these options are selected by default.

Optimize for zero gains. Specify whether to remove zero-gain blocks from
the realized filter.

Optimize for unity gains. Specify whether to replace unity-gain blocks
with direct connections in the filter subsystem.

Optimize for -1 gains. Specify whether to replace negative unity-gain
blocks with a sign change at the nearest sum block in the filter.

Optimize delay chains. Specify whether to replace cascaded chains of delay
blocks with a single integer delay block to provide an equivalent delay.

Each of these options can optimize the way your filter performs in simulation
and in code you might generate from your model.

Example — Realize a Filter Using FDATool
After your quantized filter in FDATool is performing the way you want, with
your desired phase and magnitude response, and with the right coefficients
and form, follow these steps to realize your filter as a subsystem that you
can use in a Simulink model.

1 Click Realize Model on the sidebar to change FDATool to realize model
mode.

2 From the Destination list under Model, select either:

• Current model— to add the realized filter subsystem to your current
model

• New model— to open a new Simulink model window and add your filter
subsystem to the new window

3 Provide a name for your new filter subsystem in the Name field.

4-86

Realizing Filters as Simulink® Subsystem Blocks

4 Decide whether to overwrite an existing block with this new one, and
select or clear Overwrite block to direct FDATool which way to go —
overwrite or not.

5 Select Fixed-point blocks from the list in Block Type.

6 Select or clear the optimizations to apply.

• Optimize for zero gains — removes zero gain blocks from the model
realization

• Optimize for unity gains — replaces unity gain blocks with direct
connections to adjacent blocks

• Optimize for -1 gains — replaces negative gain blocks by a change
of sign at the nearest sum block

• Optimize delay chains— replaces cascaded delay blocks with a single
delay block that produces the equivalent gain

7 Click Realize Model to realize your quantized filter as a subsystem block
according to the settings you selected.

If you double-click the filter block subsystem created by FDATool, you see the
filter implementation in Simulink model form. Depending on the options you
chose when you realized your filter, and the filter you started with, you might
see one or more sections, or different architectures based on the form of your
quantized filter. From this point on, the subsystem filter block acts like any
other block that you use in Simulink models.

Supported Filter Structures
FDATool lets you realize discrete-time and multirate filters from the following
forms:

Structure Description

firdecim Decimators based on FIR filters
firtdecim Decimators based on transposed FIR

filters
linearinterp Linear interpolators

4-87

4 Using FDATool with Filter Design Toolbox™ Software

Structure Description

firinterp Interpolators based on FIR filters
multirate polyphase Multirate filters
holdinterp Interpolators that use the hold

interpolation algorithm
dfilt.allpass Discrete-time filters with allpass

structure

dfilt.cascadeallpass

dfilt.cascadewdfallpass

mfilt.iirdecim Decimators based on IIR filters
mfilt.iirwdfdecim

mfilt.iirinterp Interpolators based on IIR filters
mfilt.iirwdfinterp

dfilt.wdfallpass

4-88

Getting Help for FDATool

Getting Help for FDATool

In this section...

“The What’s This? Option” on page 4-89
“Additional Help for FDATool” on page 4-89

The What’s This? Option
To find information on a particular option or region of the dialog box:

1 Click the What’s This? button .

Your cursor changes to .

2 Click the region or option of interest.

For example, click Turn quantization on to find out what this option does.

You can also select What’s this? from the Help menu to launch
context-sensitive help.

Additional Help for FDATool
For help about importing filters into FDATool, or for details about using
FDATool to create and analyze double-precision filters, refer to the “FDATool:
A Filter Design and Analysis GUI” in your Signal Processing Toolbox
documentation.

4-89

4 Using FDATool with Filter Design Toolbox™ Software

4-90

5

Adaptive Filters

• “Introducing Adaptive Filtering” on page 5-2

• “Overview of Adaptive Filters and Applications” on page 5-4

• “Adaptive Filters in Filter Design Toolbox Software” on page 5-11

• “Examples of Adaptive Filters That Use LMS Algorithms” on page 5-15

• “Example of Adaptive Filter That Uses RLS Algorithm” on page 5-36

• “Selected Bibliography” on page 5-41

5 Adaptive Filters

Introducing Adaptive Filtering
Adaptive filtering involves the changing of filter parameters (coefficients) over
time, to adapt to changing signal characteristics. Over the past three decades,
digital signal processors have made great advances in increasing speed and
complexity, and reducing power consumption. As a result, real-time adaptive
filtering algorithms are quickly becoming practical and essential for the
future of communications, both wired and wireless.

In the following sections, this guide presents an overview of adaptive filtering;
discussions of some of the common applications for adaptive filters; and
details about the adaptive filters available in the toolbox.

Listed below are the sections that cover adaptive filters in this guide. Within
each section, examples and a short discussion of the theory of the filters
introduce the adaptive filter concepts.

• “Overview of Adaptive Filters and Applications” on page 5-4 presents a
general discussion of adaptive filters and their applications.

- “System Identification” on page 5-7 — Using adaptive filters to identify
the response of an unknown system such as a communications channel
or a telephone line.

- “Inverse System Identification” on page 5-8—Using adaptive filters to
develop a filter that has a response that is the inverse of an unknown
system.

- “Noise or Interference Cancellation” on page 5-9— Performing active
noise cancellation where the filter adapts in real-time to remove noise
by keeping the error small.

- “Prediction” on page 5-9 — describes using adaptive filters to predict a
signal’s future values.

• “System Identification” on page 5-7 describes the important considerations
for selecting an adaptive filter for an application.

• “Adaptive Filters in Filter Design Toolbox Software” on page 5-11 lists the
adaptive filters included in the toolbox.

5-2

Introducing Adaptive Filtering

• “Examples of Adaptive Filters That Use LMS Algorithms” on page 5-15
presents a discussion of using LMS techniques to perform the filter
adaptation process.

• “Example of Adaptive Filter That Uses RLS Algorithm” on page 5-36
discusses adaptive filters based on the RMS techniques for minimizing the
total error between the known and unknown systems.

For more detailed information about adaptive filters and adaptive filter
theory, refer to the books listed in “Selected Bibliography” on page 5-41.

5-3

5 Adaptive Filters

Overview of Adaptive Filters and Applications

In this section...

“Adaptive Filtering Methodology” on page 5-4
“Choosing an Adaptive Filter” on page 5-6
“System Identification” on page 5-7
“Inverse System Identification” on page 5-8
“Noise or Interference Cancellation” on page 5-9
“Prediction” on page 5-9

Adaptive Filtering Methodology
This section presents a brief description of how adaptive filters work and
some of the applications where they can be useful.

Adaptive filters self learn. As the signal into the filter continues, the adaptive
filter coefficients adjust themselves to achieve the desired result, such as
identifying an unknown filter or canceling noise in the input signal. In the
figure below, the shaded box represents the adaptive filter, comprising the
adaptive filter and the adaptive recursive least squares (RLS) algorithm.

����

����	
���������������������
��������

�����	
��������������

����������
�
����

�����������
�
����

������	�����
�
����

����������
�
����

�

�

Block Diagram That Defines the Inputs and Output of a Generic RLS Adaptive
Filter

The next figure provides the general adaptive filter setup with inputs and
outputs.

5-4

Overview of Adaptive Filters and Applications

����

����	
���������������������
��������

�	
���������������

����������
�
����

�����������
�
����

������	�����
�
����

����������
�
����

�

�

Block Diagram Defining General Adaptive Filter Algorithm Inputs and
Outputs

Filter Design Toolbox software includes adaptive filters of a broad range of
forms, all of which can be worthwhile for specific needs. Some of the common
ones are:

• Adaptive filters based on least mean squares (LMS) techniques, such as
adaptfilt.lms, adaptfilt.filtxlms, and adaptfilt.nlms

• Adaptive filters based on recursive least squares (RLS) techniques. For
example, adaptfilt.rls and adaptfilt.swrls

• Adaptive filters based on sign-data (adaptfilt.sd), sign-error
(adaptfilt.se), and sign-sign (adaptfilt.ss) techniques

• Adaptive filters based on lattice filters. For example, adaptfilt.gal and
adaptfilt.lsl

• Adaptive filters that operate in the frequency domain, such as
adaptfilt.fdaf and adaptfilt.pbufdaf.

• Adaptive filters that operate in the transform domain. Two of these are the
adaptfilt.tdafdft and adaptfilt.tdafdct filters

An adaptive filter designs itself based on the characteristics of the input
signal to the filter and a signal that represents the desired behavior of the
filter on its input.

Designing the filter does not require any other frequency response information
or specification. To define the self-learning process the filter uses, you select

5-5

5 Adaptive Filters

the adaptive algorithm used to reduce the error between the output signal
y(k) and the desired signal d(k).

When the LMS performance criterion for e(k) has achieved its minimum value
through the iterations of the adapting algorithm, the adaptive filter is finished
and its coefficients have converged to a solution. Now the output from the
adaptive filter matches closely the desired signal d(k). When you change the
input data characteristics, sometimes called the filter environment, the filter
adapts to the new environment by generating a new set of coefficients for the
new data. Notice that when e(k) goes to zero and remains there you achieve
perfect adaptation, the ideal result but not likely in the real world.

The adaptive filter functions in this toolbox implement the shaded portion of
the figures, replacing the adaptive algorithm with an appropriate technique.
To use one of the functions, you provide the input signal or signals and the
initial values for the filter.

“Adaptive Filters in Filter Design Toolbox Software” on page 5-11 offers
details about the algorithms available and the inputs required to use them
in MATLAB.

Choosing an Adaptive Filter
Selecting the adaptive filter that best meets your needs requires careful
consideration. An exhaustive discussion of the criteria for selecting your
approach is beyond the scope of this User’s Guide. However, a few guidelines
can help you make your choice.

Two main considerations frame the decision — how you plan to use the filter
and the filter algorithm to use.

When you begin to develop an adaptive filter for your needs, most likely the
primary concern is whether using an adaptive filter is a cost-competitive
approach to solving your filtering needs. Generally many areas determine the
suitability of adaptive filters (these areas are common to most filtering and
signal processing applications). Four such areas are

• Filter consistency — Does your filter performance degrade when the filter
coefficients change slightly as a result of quantization, or you switch

5-6

Overview of Adaptive Filters and Applications

to fixed-point arithmetic? Will excessive noise in the signal hurt the
performance of your filter?

• Filter performance — Does your adaptive filter provide sufficient
identification accuracy or fidelity, or does the filter provide sufficient signal
discrimination or noise cancellation to meet your requirements?

• Tools — Do tools exist that make your filter development process easier?
Better tools can make it practical to use more complex adaptive algorithms.

• DSP requirements — Can your filter perform its job within the constraints
of your application? Does your processor have sufficient memory,
throughput, and time to use your proposed adaptive filtering approach?
Can you trade memory for throughput: use more memory to reduce the
throughput requirements or use a faster signal processor?

Of the preceding considerations, characterizing filter consistency or
robustness may be the most difficult.

The simulations in Filter Design Toolbox software offers a good first step in
developing and studying these issues. LMS algorithm filters provide both a
relatively straightforward filters to implement and sufficiently powerful tool
for evaluating whether adaptive filtering can be useful for your problem.

Additionally, starting with an LMS approach can form a solid baseline against
which you can study and compare the more complex adaptive filters available
in the toolbox. Finally, your development process should, at some time, test
your algorithm and adaptive filter with real data. For truly testing the value
of your work there is no substitute for actual data.

System Identification
One common adaptive filter application is to use adaptive filters to identify
an unknown system, such as the response of an unknown communications
channel or the frequency response of an auditorium, to pick fairly divergent
applications. Other applications include echo cancellation and channel
identification.

In the figure, the unknown system is placed in parallel with the adaptive
filter. This layout represents just one of many possible structures. The shaded
area contains the adaptive filter system.

5-7

5 Adaptive Filters

����

�� ��!���"����

�	
����������� ���
����

����

���� ����
�

�

Using an Adaptive Filter to Identify an Unknown System

Clearly, when e(k) is very small, the adaptive filter response is close to the
response of the unknown system. In this case the same input feeds both the
adaptive filter and the unknown. If, for example, the unknown system is a
modem, the input often represents white noise, and is a part of the sound you
hear from your modem when you log in to your Internet service provider.

Inverse System Identification
By placing the unknown system in series with your adaptive filter, your
filter adapts to become the inverse of the unknown system as e(k) becomes
very small. As shown in the figure the process requires a delay inserted in
the desired signal d(k) path to keep the data at the summation synchronized.
Adding the delay keeps the system causal.

�	
������������� ��!���"���� ���
����

����

���� ����
�

�

���
"

	���

Determining an Inverse Response to an Unknown System

Including the delay to account for the delay caused by the unknown system
prevents this condition.

5-8

Overview of Adaptive Filters and Applications

Plain old telephone systems (POTS) commonly use inverse system
identification to compensate for the copper transmission medium. When
you send data or voice over telephone lines, the copper wires behave like a
filter, having a response that rolls off at higher frequencies (or data rates)
and having other anomalies as well.

Adding an adaptive filter that has a response that is the inverse of the wire
response, and configuring the filter to adapt in real time, lets the filter
compensate for the rolloff and anomalies, increasing the available frequency
output range and data rate for the telephone system.

Noise or Interference Cancellation
In noise cancellation, adaptive filters let you remove noise from a signal in
real time. Here, the desired signal, the one to clean up, combines noise and
desired information. To remove the noise, feed a signal n’(k) to the adaptive
filter that represents noise that is correlated to the noise to remove from
the desired signal.

�	
����������� ���
����

����

���� ����
�

�

	�����
���

����

Using an Adaptive Filter to Remove Noise from an Unknown System

So long as the input noise to the filter remains correlated to the unwanted
noise accompanying the desired signal, the adaptive filter adjusts its
coefficients to reduce the value of the difference between y(k) and d(k),
removing the noise and resulting in a clean signal in e(k). Notice that in
this application, the error signal actually converges to the input data signal,
rather than converging to zero.

Prediction
Predicting signals requires that you make some key assumptions. Assume
that the signal is either steady or slowly varying over time, and periodic over
time as well.

5-9

5 Adaptive Filters

�	
����������� ���
	���

����

���� ����
�

�
����

���
"

Predicting Future Values of a Periodic Signal

Accepting these assumptions, the adaptive filter must predict the future
values of the desired signal based on past values. When s(k) is periodic and
the filter is long enough to remember previous values, this structure with the
delay in the input signal, can perform the prediction. You might use this
structure to remove a periodic signal from stochastic noise signals.

Finally, notice that most systems of interest contain elements of more than
one of the four adaptive filter structures. Carefully reviewing the real
structure may be required to determine what the adaptive filter is adapting to.

Also, for clarity in the figures, the analog-to-digital (A/D) and digital-to-analog
(D/A) components do not appear. Since the adaptive filters are assumed to be
digital in nature, and many of the problems produce analog data, converting
the input signals to and from the analog domain is probably necessary.

5-10

Adaptive Filters in Filter Design Toolbox™ Software

Adaptive Filters in Filter Design Toolbox Software

In this section...

“Overview of Adaptive Filtering in Filter Design Toolbox Software” on page
5-11
“Algorithms” on page 5-11
“Using Adaptive Filter Objects” on page 5-14

Overview of Adaptive Filtering in Filter Design
Toolbox Software
Filter Design Toolbox software contains many objects for constructing and
applying adaptive filters to data. As you see in the tables in the next section,
the objects use various algorithms to determine the weights for the filter
coefficients of the adapting filter. While the algorithms differ in their detail
implementations, the LMS and RLS share a common operational approach —
minimizing the error between the filter output and the desired signal.

Algorithms
For adaptive filter (adaptfilt) objects, the algorithm string determines
which adaptive filter algorithm your adaptfilt object implements. Each
available algorithm entry appears in one of the tables along with a brief
description of the algorithm. Click on the algorithm in the first column to get
more information about the associated adaptive filter technique.

• LMS based adaptive filters

• RLS based adaptive filters

• Affine projection adaptive filters

• Adaptive filters in the frequency domain

• Lattice based adaptive filters

5-11

5 Adaptive Filters

Least Mean Squares (LMS) Based FIR Adaptive Filters

Adaptive Filter
Method

Adapting Algorithm Used to Generate Filter
Coefficients During Adaptation

adaptfilt.adjlms Adjoint LMS FIR adaptive filter algorithm
adaptfilt.blms Block LMS FIR adaptive filter algorithm
adaptfilt.blmsfft FFT-based Block LMS FIR adaptive filter

algorithm
adaptfilt.dlms Delayed LMS FIR adaptive filter algorithm
adaptfilt.filtxlms Filtered-x LMS FIR adaptive filter algorithm
adaptfilt.lms LMS FIR adaptive filter algorithm
adaptfilt.nlms Normalized LMS FIR adaptive filter algorithm
adaptfilt.sd Sign-data LMS FIR adaptive filter algorithm
adaptfilt.se Sign-error LMS FIR adaptive filter algorithm
adaptfilt.ss Sign-sign LMS FIR adaptive filter algorithm

For further information about an adapting algorithm, refer to the reference
page for the algorithm.

Recursive Least Squares (RLS) Based FIR Adaptive Filters

Adaptive Filter
Method

Adapting Algorithm Used to Generate Filter
Coefficients During Adaptation

adaptfilt.ftf Fast transversal least-squares adaptation algorithm
adaptfilt.qrdrls QR-decomposition RLS adaptation algorithm
adaptfilt.hrls Householder RLS adaptation algorithm
adaptfilt.hswrls Householder SWRLS adaptation algorithm
adaptfilt.rls Recursive-least squares (RLS) adaptation algorithm
adaptfilt.swrls Sliding window (SW) RLS adaptation algorithm
adaptfilt.swftf Sliding window FTF adaptation algorithm

5-12

Adaptive Filters in Filter Design Toolbox™ Software

For more complete information about an adapting algorithm, refer to the
reference page for the algorithm.

Affine Projection (AP) FIR Adaptive Filters

Adaptive Filter
Method

Adapting Algorithm Used to Generate Filter
Coefficients During Adaptation

adaptfilt.ap Affine projection algorithm that uses direct matrix
inversion

adaptfilt.apru Affine projection algorithm that uses recursive matrix
updating

adaptfilt.bap Block affine projection adaptation algorithm

To find more information about an adapting algorithm, refer to the reference
page for the algorithm.

FIR Adaptive Filters in the Frequency Domain (FD)

Adaptive Filter
Method

Description of the Adapting Algorithm
Used to Generate Filter Coefficients During
Adaptation

adaptfilt.fdaf Frequency domain adaptation algorithm
adaptfilt.pbfdaf Partition block version of the FDAF algorithm
adaptfilt.pbufdaf Partition block unconstrained version of the FDAF

algorithm
adaptfilt.tdafdct Transform domain adaptation algorithm using

DCT
adaptfilt.tdafdft Transform domain adaptation algorithm using

DFT
adaptfilt.ufdaf Unconstrained FDAF algorithm for adaptation

For more information about an adapting algorithm, refer to the reference
page for the algorithm.

5-13

5 Adaptive Filters

Lattice-Based (L) FIR Adaptive Filters

Adaptive Filter
Method

Description of the Adapting Algorithm Used to
Generate Filter Coefficients During Adaptation

adaptfilt.gal Gradient adaptive lattice filter adaptation algorithm
adaptfilt.lsl Least squares lattice adaptation algorithm
adaptfilt.qrdlsl QR decomposition RLS adaptation algorithm

For more information about an adapting algorithm, refer to the reference
page for the algorithm.

Presenting a detailed derivation of the Wiener-Hopf equation and determining
solutions to it is beyond the scope of this User’s Guide. Full descriptions of
the theory appear in the adaptive filter references provided in the “Selected
Bibliography” on page 5-41.

Using Adaptive Filter Objects
After you construct an adaptive filter object, how do you apply it to your data
or system? Like quantizer objects, adaptive filter objects have a filter
method that you use to apply the adaptfilt object to data. In the following
sections, various examples of using LMS and RLS adaptive filters show you
how filter works with the objects to apply them to data.

• “Examples of Adaptive Filters That Use LMS Algorithms” on page 5-15

• “Example of Adaptive Filter That Uses RLS Algorithm” on page 5-36

5-14

Examples of Adaptive Filters That Use LMS Algorithms

Examples of Adaptive Filters That Use LMS Algorithms

In this section...

“LMS Methods Available in Filter Design Toolbox Software” on page 5-15
“adaptfilt.lms Example — System Identification” on page 5-17
“adaptfilt.nlms Example — System Identification” on page 5-20
“adaptfilt.sd Example — Noise Cancellation” on page 5-23
“adaptfilt.se Example — Noise Cancellation” on page 5-27
“adaptfilt.ss Example — Noise Cancellation” on page 5-32

LMS Methods Available in Filter Design Toolbox
Software
This section provides introductory examples using some of the least mean
squares (LMS) adaptive filter functions in the toolbox.

The toolbox provides many adaptive filter design functions that use the LMS
algorithms to search for the optimal solution to the adaptive filter, including

• adaptfilt.lms— Implement the LMS algorithm to solve the Wiener-Hopf
equation and find the filter coefficients for an adaptive filter.

• adaptfilt.nlms — Implement the normalized variation of the LMS
algorithm to solve the Wiener-Hopf equation and determine the filter
coefficients of an adaptive filter.

• adaptfilt.sd— Implement the sign-data variation of the LMS algorithm
to solve the Wiener-Hopf equation and determine the filter coefficients of
an adaptive filter. The correction to the filter weights at each iteration
depends on the sign of the input x(k).

• adaptfilt.se— Implement the sign-error variation of the LMS algorithm
to solve the Wiener-Hopf equation and determine the filter coefficients of
an adaptive filter. The correction applied to the current filter weights for
each successive iteration depends on the sign of the error, e(k).

• adaptfilt.ss— Implement the sign-sign variation of the LMS algorithm
to solve the Wiener-Hopf equation and determine the filter coefficients of an

5-15

5 Adaptive Filters

adaptive filter. The correction applied to the current filter weights for each
successive iteration depends on both the sign of x(k) and the sign of e(k).

To demonstrate the differences and similarities among the various LMS
algorithms supplied in the toolbox, the LMS and NLMS adaptive filter
examples use the same filter for the unknown system. The unknown filter is
the constrained lowpass filter from firgr and fircband examples.

[b,err,res]=firgr(12,[0 0.4 0.5 1], [1 1 0 0], [1 0.2],...
{'w' 'c'});

From the figure you see that the filter is indeed lowpass and constrained to
0.2 ripple in the stopband. With this as the baseline, the adaptive LMS filter
examples use the adaptive LMS algorithms and their initialization functions
to identify this filter in a system identification role.

To review the general model for system ID mode, look at “System
Identification” on page 5-7 for the layout.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de

5-16

Examples of Adaptive Filters That Use LMS Algorithms

For the sign variations of the LMS algorithm, the examples use noise
cancellation as the demonstration application, as opposed to the system
identification application used in the LMS examples.

adaptfilt.lms Example — System Identification
To use the adaptive filter functions in the toolbox you need to provide three
things:

• The adaptive LMS function to use. This example uses the LMS adaptive
filter function adaptfilt.lms.

• An unknown system or process to adapt to. In this example, the filter
designed by firgr is the unknown system.

• Appropriate input data to exercise the adaptation process. In terms of
the generic LMS model, these are the desired signal d(k) and the input
signal x(k).

Start by defining an input signal x.

x = 0.1*randn(1,250);

The input is broadband noise. For the unknown system filter, use firgr to
create a twelfth-order lowpass filter:

[b,err,res] = firgr(12,[0 0.4 0.5 1],[1 1 0 0],[1 0.2],{'w','c'});

Although you do not need them here, include the err and res output
arguments.

Now filter the signal through the unknown system to get the desired signal.

d = filter(b,1,x);

With the unknown filter designed and the desired signal in place you construct
and apply the adaptive LMS filter object to identify the unknown.

Preparing the adaptive filter object requires that you provide starting values
for estimates of the filter coefficients and the LMS step size. You could start
with estimated coefficients of some set of nonzero values; this example uses
zeros for the 12 initial filter weights.

5-17

5 Adaptive Filters

For the step size, 0.8 is a reasonable value — a good compromise between
being large enough to converge well within the 250 iterations (250 input
sample points) and small enough to create an accurate estimate of the
unknown filter.

mu = 0.8;
ha = adaptfilt.lms(13,mu);

Finally, using the adaptfilt object ha, desired signal, d, and the input to the
filter, x, run the adaptive filter to determine the unknown system and plot
the results, comparing the actual coefficients from firgr to the coefficients
found by adaptlms.

[y,e] = filter(ha,x,d);
stem([b.' ha.coefficients.'])

0 2 4 6 8 10 12 14
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6
System Identification by Adaptive LMS Algorithm

Actual Filter Weights
Estimated Filter Weights

In the stem plot the actual and estimated filter weights are the same. As an
experiment, try changing the step size to 0.2. Repeating the example with

5-18

Examples of Adaptive Filters That Use LMS Algorithms

mu = 0.2 results in the following stem plot. The estimated weights fail to
approximate the actual weights closely.

0 2 4 6 8 10 12 14
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6
System Identification by Adaptive LMS Algorithm

Actual Filter Weights
Estimated Filter Weights

Since this may be because you did not iterate over the LMS algorithm enough
times, try using 1000 samples. With 1000 samples, the stem plot, shown
in the next figure, looks much better, albeit at the expense of much more
computation. Clearly you should take care to select the step size with both the
computation required and the fidelity of the estimated filter in mind.

5-19

5 Adaptive Filters

0 2 4 6 8 10 12 14
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6
System Identification by Adaptive LMS Algorithm

Actual Filter Weights
Estimated Filter Weights

adaptfilt.nlms Example — System Identification
To improve the convergence performance of the LMS algorithm, the
normalized variant (NLMS) uses an adaptive step size based on the signal
power. As the input signal power changes, the algorithm calculates the input
power and adjusts the step size to maintain an appropriate value. Thus the
step size changes with time.

As a result, the normalized algorithm converges more quickly with fewer
samples in many cases. For input signals that change slowly over time, the
normalized LMS can represent a more efficient LMS approach.

In the adaptlms example, you used firgr to create the filter that you would
identify. So you can compare the results, you use the same filter, and replace
adaptlms with adaptnlms, to use the normalized LMS algorithm variation.
You should see better convergence with similar fidelity.

5-20

Examples of Adaptive Filters That Use LMS Algorithms

First, generate the input signal and the unknown filter.

x = 0.1*randn(1,500);
[b,err,res] = fircband(12,[0 0.4 0.5 1], [1 1 0 0], [1 0.2],...
{'w' 'c'});
d = filter(b,1,x);

Again d represents the desired signal d(x) as you defined it earlier and b
contains the filter coefficients for your unknown filter.

mu = 0.8;
ha = adaptfilt.nlms(13,mu);

You use the preceding code to initialize the normalized LMS algorithm.
For more information about the optional input arguments, refer to
adaptfilt.nlms in the reference section of this User’s Guide.

Running the system identification process is a matter of using
adaptfilt.nlms with the desired signal, the input signal, and the initial filter
coefficients and conditions specified in s as input arguments. Then plot the
results to compare the adapted filter to the actual filter.

[y,e] = filter(ha,x,d);
stem([b.' ha.coefficients.'])

As shown in the following stem plot (a convenient way to compare the
estimated and actual filter coefficients), the two are nearly identical.

5-21

5 Adaptive Filters

0 2 4 6 8 10 12 14
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6
System Identification by Normalized LMS Algorithm

Actual Filter Weights
Estimated Filter Weights

If you compare the convergence performance of the regular LMS algorithm to
the normalized LMS variant, you see the normalized version adapts in far
fewer iterations to a result almost as good as the nonnormalized version.

5-22

Examples of Adaptive Filters That Use LMS Algorithms

0 50 100 150 200 250 300 350 400 450 500
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08
Comparing the LMS and NLMS Convergence Performance

Sample Number

M
ea

n
S

qu
ar

e
E

rr
or

NLMS Derived Filter Weights
LMS Derived Filter Weights

adaptfilt.sd Example — Noise Cancellation
When the amount of computation required to derive an adaptive filter drives
your development process, the sign-data variant of the LMS (SDLMS)
algorithm may be a very good choice as demonstrated in this example.

Fortunately, the current state of digital signal processor (DSP) design has
relaxed the need to minimize the operations count by making DSPs whose
multiply and shift operations are as fast as add operations. Thus some of
the impetus for the sign-data algorithm (and the sign-error and sign-sign
variations) has been lost to DSP technology improvements.

In the standard and normalized variations of the LMS adaptive filter,
coefficients for the adapting filter arise from the mean square error between
the desired signal and the output signal from the unknown system. Using the

5-23

5 Adaptive Filters

sign-data algorithm changes the mean square error calculation by using the
sign of the input data to change the filter coefficients.

When the error is positive, the new coefficients are the previous coefficients
plus the error multiplied by the step size µ. If the error is negative, the new
coefficients are again the previous coefficients minus the error multiplied
by µ — note the sign change.

When the input is zero, the new coefficients are the same as the previous set.

In vector form, the sign-data LMS algorithm is

,

with vector w containing the weights applied to the filter coefficients and
vector x containing the input data. e(k) (equal to desired signal - filtered
signal) is the error at time k and is the quantity the SDLMS algorithm seeks
to minimize. µ (mu) is the step size.

As you specify mu smaller, the correction to the filter weights gets smaller
for each sample and the SDLMS error falls more slowly. Larger mu changes
the weights more for each step so the error falls more rapidly, but the
resulting error does not approach the ideal solution as closely. To ensure good
convergence rate and stability, select mu within the following practical bounds

where N is the number of samples in the signal. Also, define mu as a power of
two for efficient computing.

5-24

Examples of Adaptive Filters That Use LMS Algorithms

Note How you set the initial conditions of the sign-data algorithm profoundly
influences the effectiveness of the adaptation. Because the algorithm
essentially quantizes the input signal, the algorithm can become unstable
easily.

A series of large input values, coupled with the quantization process may
result in the error growing beyond all bounds. You restrain the tendency of
the sign-data algorithm to get out of control by choosing a small step size (µ<<
1) and setting the initial conditions for the algorithm to nonzero positive
and negative values.

In this noise cancellation example, adaptfilt.sd requires two input data
sets:

• Data containing a signal corrupted by noise. In Using an Adaptive Filter
to Remove Noise from an Unknown System on page 5-9, this is d(k), the
desired signal. The noise cancellation process removes the noise, leaving
the signal.

• Data containing random noise (x(k) in Using an Adaptive Filter to Remove
Noise from an Unknown System on page 5-9) that is correlated with the
noise that corrupts the signal data. Without the correlation between the
noise data, the adapting algorithm cannot remove the noise from the signal.

For the signal, use a sine wave. Note that signal is a column vector of 1000
elements.

signal = sin(2*pi*0.055*[0:1000-1]');

Now, add correlated white noise to signal. To ensure that the noise is
correlated, pass the noise through a lowpass FIR filter, and then add the
filtered noise to the signal.

noise=randn(1,1000);
nfilt=fir1(11,0.4); % Eleventh order lowpass filter
fnoise=filter(nfilt,1,noise); % Correlated noise data
d=signal.'+fnoise;

5-25

5 Adaptive Filters

fnoise is the correlated noise and d is now the desired input to the sign-data
algorithm.

To prepare the adaptfilt object for processing, set the input conditions
coeffs and mu for the object. As noted earlier in this section, the values you
set for coeffs and mu determine whether the adaptive filter can remove the
noise from the signal path.

In “adaptfilt.lms Example — System Identification” on page 5-17, you
constructed a default filter that sets the filter coefficients to zeros. In most
cases that approach does not work for the sign-data algorithm. The closer you
set your initial filter coefficients to the expected values, the more likely it is
that the algorithm remains well behaved and converges to a filter solution
that removes the noise effectively.

For this example, start with the coefficients in the filter you used to filter the
noise (nfilt), and modify them slightly so the algorithm has to adapt.

coeffs = nfilt.' -0.01; % Set the filter initial conditions.
mu = 0.05; % Set the step size for algorithm updating.

With the required input arguments for adaptfilt.sd prepared, construct the
adaptfilt object, run the adaptation, and view the results.

ha = adaptfilt.sd(12,mu)
set(ha,'coefficients',coeffs);
[y,e] = filter(ha,noise,d);
plot(0:199,signal(1:200),0:199,e(1:200));

When adaptfilt.sd runs, it uses far fewer multiply operations than either of
the LMS algorithms. Also, performing the sign-data adaptation requires only
bit shifting multiplies when the step size is a power of two.

Although the performance of the sign-data algorithm as shown in the next
figure is quite good, the sign-data algorithm is much less stable than the
standard LMS variations. In this noise cancellation example, the signal after
processing is a very good match to the input signal, but the algorithm could
very easily grow without bound rather than achieve good performance.

5-26

Examples of Adaptive Filters That Use LMS Algorithms

Changing coeffs, mu, or even the lowpass filter you used to create the
correlated noise can cause noise cancellation to fail and the algorithm to
become useless.

0 20 40 60 80 100 120 140 160 180 200
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
Noise Cancellation by the Sign−Data Algorithm

Sample Number

E
rr

or
 V

al
ue

Actual Signal
Result of Noise Cancellation

adaptfilt.se Example — Noise Cancellation
In some cases, the sign-error variant of the LMS algorithm (SELMS) may be a
very good choice for an adaptive filter application.

In the standard and normalized variations of the LMS adaptive filter, the
coefficients for the adapting filter arise from calculating the mean square
error between the desired signal and the output signal from the unknown
system, and applying the result to the current filter coefficients. Using the
sign-error algorithm replaces the mean square error calculation by using the
sign of the error to modify the filter coefficients.

5-27

5 Adaptive Filters

When the error is positive, the new coefficients are the previous coefficients
plus the error multiplied by the step size µ. If the error is negative, the new
coefficients are again the previous coefficients minus the error multiplied by
µ — note the sign change. When the input is zero, the new coefficients are
the same as the previous set.

In vector form, the sign-error LMS algorithm is

,

with vector w containing the weights applied to the filter coefficients and
vector x containing the input data. e(k) (equal to desired signal - filtered
signal) is the error at time k and is the quantity the SELMS algorithm seeks
to minimize. µ (mu) is the step size. As you specify mu smaller, the correction
to the filter weights gets smaller for each sample and the SELMS error falls
more slowly.

Larger mu changes the weights more for each step so the error falls more
rapidly, but the resulting error does not approach the ideal solution as closely.
To ensure good convergence rate and stability, select mu within the following
practical bounds

where N is the number of samples in the signal. Also, define mu as a power of
two for efficient computation.

5-28

Examples of Adaptive Filters That Use LMS Algorithms

Note How you set the initial conditions of the sign-data algorithm profoundly
influences the effectiveness of the adaptation. Because the algorithm
essentially quantizes the error signal, the algorithm can become unstable
easily.

A series of large error values, coupled with the quantization process may
result in the error growing beyond all bounds. You restrain the tendency of
the sign-error algorithm to get out of control by choosing a small step size
(µ<< 1) and setting the initial conditions for the algorithm to nonzero positive
and negative values.

In this noise cancellation example, adaptfilt.se requires two input data
sets:

• Data containing a signal corrupted by noise. In Using an Adaptive Filter
to Remove Noise from an Unknown System on page 5-9, this is d(k), the
desired signal. The noise cancellation process removes the noise, leaving
the signal.

• Data containing random noise (x(k) in Using an Adaptive Filter to Remove
Noise from an Unknown System on page 5-9) that is correlated with the
noise that corrupts the signal data. Without the correlation between the
noise data, the adapting algorithm cannot remove the noise from the signal.

For the signal, use a sine wave. Note that signal is a column vector of 1000
elements.

signal = sin(2*pi*0.055*[0:1000-1]');

Now, add correlated white noise to signal. To ensure that the noise is
correlated, pass the noise through a lowpass FIR filter, then add the filtered
noise to the signal.

noise=randn(1,1000);
nfilt=fir1(11,0.4); % Eleventh order lowpass filter.
fnoise=filter(nfilt,1,noise); % Correlated noise data.
d=signal.'+fnoise;

5-29

5 Adaptive Filters

fnoise is the correlated noise and d is now the desired input to the sign-data
algorithm.

To prepare the adaptfilt object for processing, set the input conditions
coeffs and mu for the object. As noted earlier in this section, the values you
set for coeffs and mu determine whether the adaptive filter can remove
the noise from the signal path. In “adaptfilt.lms Example — System
Identification” on page 5-17, you constructed a default filter that sets the filter
coefficients to zeros.

Setting the coefficients to zero often does not work for the sign-error
algorithm. The closer you set your initial filter coefficients to the expected
values, the more likely it is that the algorithm remains well behaved and
converges to a filter solution that removes the noise effectively.

For this example, you start with the coefficients in the filter you used to filter
the noise (nfilt), and modify them slightly so the algorithm has to adapt.

coeffs = nfilt.' -0.01; % Set the filter initial conditions.
mu = 0.05; % Set step size for algorithm update.

With the required input arguments for adaptfilt.se prepared, run the
adaptation and view the results.

ha = adaptfilt.sd(12,mu)
set(ha,'coefficients',coeffs);
set(ha,'persistentmemory',true); % Prevent filter reset.
[y,e] = filter(ha,noise,d);
plot(0:199,signal(1:200),0:199,e(1:200));

Notice that you have to set the property PersistentMemory to true when you
manually change the settings of object ha.

If PersistentMemory is left to false, the default, when you try to apply
ha with the method filter, the filtering process starts by resetting the
object properties to their initial conditions at construction. To preserve the
customized coefficients in this example, you set PersistentMemory to true so
the coefficients do not get reset automatically back to zero.

5-30

Examples of Adaptive Filters That Use LMS Algorithms

When adaptfilt.se runs, it uses far fewer multiply operations than either of
the LMS algorithms. Also, performing the sign-error adaptation requires only
bit shifting multiplies when the step size is a power of two.

Although the performance of the sign-data algorithm as shown in the next
figure is quite good, the sign-data algorithm is much less stable than the
standard LMS variations. In this noise cancellation example, the signal after
processing is a very good match to the input signal, but the algorithm could
very easily become unstable rather than achieve good performance.

Changing coeffs, mu, or even the lowpass filter you used to create the
correlated noise can cause noise cancellation to fail and the algorithm to
become useless.

0 20 40 60 80 100 120 140 160 180 200
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
Noise Cancellation Performance by the Sign−Error LMS Algorithm

Sample Number

E
rr

or
 V

al
ue

Actual Signal
Error After Noise Reduction

5-31

5 Adaptive Filters

adaptfilt.ss Example — Noise Cancellation
One more example of a variation of the LMS algorithm in the toolbox is the
sign-sign variant (SSLMS). The rationale for this version matches those for
the sign-data and sign-error algorithms presented in preceding sections. For
more details, refer to “adaptfilt.sd Example — Noise Cancellation” on page
5-23.

The sign-sign algorithm (SSLMS) replaces the mean square error calculation
with using the sign of the input data to change the filter coefficients. When
the error is positive, the new coefficients are the previous coefficients plus the
error multiplied by the step size µ.

If the error is negative, the new coefficients are again the previous coefficients
minus the error multiplied by µ — note the sign change. When the input is
zero, the new coefficients are the same as the previous set.

In essence, the algorithm quantizes both the error and the input by applying
the sign operator to them.

In vector form, the sign-sign LMS algorithm is

,

where

Vector w contains the weights applied to the filter coefficients and vector x
contains the input data. e(k) (= desired signal - filtered signal) is the error at
time k and is the quantity the SSLMS algorithm seeks to minimize. µ(mu) is
the step size. As you specify mu smaller, the correction to the filter weights
gets smaller for each sample and the SSLMS error falls more slowly.

Larger mu changes the weights more for each step so the error falls more
rapidly, but the resulting error does not approach the ideal solution as closely.
To ensure good convergence rate and stability, select mu within the following
practical bounds

5-32

Examples of Adaptive Filters That Use LMS Algorithms

where N is the number of samples in the signal. Also, define mu as a power of
two for efficient computation.

Note How you set the initial conditions of the sign-sign algorithm profoundly
influences the effectiveness of the adaptation. Because the algorithm
essentially quantizes the input signal and the error signal, the algorithm
can become unstable easily.

A series of large error values, coupled with the quantization process may
result in the error growing beyond all bounds. You restrain the tendency of
the sign-sign algorithm to get out of control by choosing a small step size (µ<<
1) and setting the initial conditions for the algorithm to nonzero positive
and negative values.

In this noise cancellation example, adaptfilt.ss requires two input data
sets:

• Data containing a signal corrupted by noise. In Using an Adaptive Filter
to Remove Noise from an Unknown System on page 5-9, this is d(k), the
desired signal. The noise cancellation process removes the noise, leaving
the cleaned signal as the content of the error signal.

• Data containing random noise (x(k) in Using an Adaptive Filter to Remove
Noise from an Unknown System on page 5-9) that is correlated with the
noise that corrupts the signal data, called. Without the correlation between
the noise data, the adapting algorithm cannot remove the noise from the
signal.

For the signal, use a sine wave. Note that signal is a column vector of 1000
elements.

signal = sin(2*pi*0.055*[0:1000-1]');

Now, add correlated white noise to signal. To ensure that the noise is
correlated, pass the noise through a lowpass FIR filter, then add the filtered
noise to the signal.

5-33

5 Adaptive Filters

noise=randn(1,1000);
nfilt=fir1(11,0.4); % Eleventh order lowpass filter
fnoise=filter(nfilt,1,noise); % Correlated noise data
d=signal.'+fnoise;

fnoise is the correlated noise and d is now the desired input to the sign-data
algorithm.

To prepare the adaptfilt object for processing, set the input conditions
coeffs and mu for the object. As noted earlier in this section, the values you set
for coeffs and mu determine whether the adaptive filter can remove the noise
from the signal path. In “adaptfilt.lms Example — System Identification” on
page 5-17, you constructed a default filter that sets the filter coefficients to
zeros. Usually that approach does not work for the sign-sign algorithm.

The closer you set your initial filter coefficients to the expected values, the
more likely it is that the algorithm remains well behaved and converges to
a filter solution that removes the noise effectively. For this example, you
start with the coefficients in the filter you used to filter the noise (nfilt), and
modify them slightly so the algorithm has to adapt.

coeffs = nfilt.' -0.01; % Set the filter initial conditions.
mu = 0.05; % Set the step size for algorithm updating.

With the required input arguments for adaptfilt.ss prepared, run the
adaptation and view the results.

ha = adaptfilt.ss(12,mu)
set(ha,'coefficients',coeffs);
set(ha,'persistentmemory',true); % Prevent filter reset.
[y,e] = filter(ha,noise,d);
plot(0:199,signal(1:200),0:199,e(1:200));

Notice that you have to set the property PersistentMemory to true when you
manually change the settings of object ha.

If PersistentMemory is left to false, when you try to apply ha with the
method filter the filtering process starts by resetting the object properties to
their initial conditions at construction. To preserve the customized coefficients
in this example, you set PersistentMemory to true so the coefficients do not
get reset automatically back to zero.

5-34

Examples of Adaptive Filters That Use LMS Algorithms

When adaptfilt.ss runs, it uses far fewer multiply operations than either of
the LMS algorithms. Also, performing the sign-sign adaptation requires only
bit shifting multiplies when the step size is a power of two.

Although the performance of the sign-sign algorithm as shown in the next
figure is quite good, the sign-sign algorithm is much less stable than the
standard LMS variations. In this noise cancellation example, the signal after
processing is a very good match to the input signal, but the algorithm could
very easily become unstable rather than achieve good performance.

Changing coeffs, mu, or even the lowpass filter you used to create the
correlated noise can cause noise cancellation to fail and the algorithm to
become useless.

0 20 40 60 80 100 120 140 160 180 200
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5
Noise Cancellation Performance of the Sign−Sign LMS Algorithm

Sample Number

E
rr

or
 V

al
ue

Actual Signal
Error After Noise Reduction

As an aside, the sign-sign LMS algorithm is part of the international CCITT
standard for 32 Kb/s ADPCM telephony.

5-35

5 Adaptive Filters

Example of Adaptive Filter That Uses RLS Algorithm

In this section...

“Introduction and Comparison to the LMS Algorithm” on page 5-36
“adaptfilt.rls Example — Inverse System Identification” on page 5-37

Introduction and Comparison to the LMS Algorithm
This section provides an introductory example that uses the RLS adaptive
filter function adaptfilt.rls.

If LMS algorithms represent the simplest and most easily applied adaptive
algorithms, the recursive least squares (RLS) algorithms represents increased
complexity, computational cost, and fidelity. In performance, RLS approaches
the Kalman filter in adaptive filtering applications, at somewhat reduced
required throughput in the signal processor.

Compared to the LMS algorithm, the RLS approach offers faster convergence
and smaller error with respect to the unknown system, at the expense of
requiring more computations.

In contrast to the least mean squares algorithm, from which it can be derived,
the RLS adaptive algorithm minimizes the total squared error between the
desired signal and the output from the unknown system.

Note that the signal paths and identifications are the same whether the filter
uses RLS or LMS. The difference lies in the adapting portion.

Within limits, you can use any of the adaptive filter algorithms to solve an
adaptive filter problem by replacing the adaptive portion of the application
with a new algorithm.

Examples of the sign variants of the LMS algorithms demonstrated this
feature to demonstrate the differences between the sign-data, sign-error, and
sign-sign variations of the LMS algorithm.

5-36

Example of Adaptive Filter That Uses RLS Algorithm

One interesting input option that applies to RLS algorithms is not present
in the LMS processes — a forgetting factor, λ, that determines how the
algorithm treats past data input to the algorithm.

When the LMS algorithm looks at the error to minimize, it considers only the
current error value. In the RLS method, the error considered is the total error
from the beginning to the current data point.

Said another way, the RLS algorithm has infinite memory — all error data is
given the same consideration in the total error. In cases where the error value
might come from a spurious input data point or points, the forgetting factor
lets the RLS algorithm reduce the value of older error data by multiplying
the old data by the forgetting factor.

Since 0 ≤λ< 1, applying the factor is equivalent to weighting the older error.
When λ = 1, all previous error is considered of equal weight in the total error.

As λ approaches zero, the past errors play a smaller role in the total. For
example, when λ = 0.9, the RLS algorithm multiplies an error value from 50
samples in the past by an attenuation factor of 0.950 = 5.15 x 10-3, considerably
deemphasizing the influence of the past error on the current total error.

adaptfilt.rls Example — Inverse System Identification
Rather than use a system identification application to demonstrate the RLS
adaptive algorithm, or a noise cancellation model, this example use the
inverse system identification model shown in here.

����

�� ��!���"����

�	
����������� ���
����

����

���� ����
�

�

5-37

5 Adaptive Filters

Cascading the adaptive filter with the unknown filter causes the adaptive
filter to converge to a solution that is the inverse of the unknown system.

If the transfer function of the unknown is H(z) and the adaptive filter
transfer function is G(z), the error measured between the desired signal
and the signal from the cascaded system reaches its minimum when the
product of H(z) and G(z) is 1, G(z)*H(z) = 1. For this relation to be true,
G(z) must equal 1/H(z), the inverse of the transfer function of the unknown
system.

To demonstrate that this is true, create a signal to input to the cascaded
filter pair.

x = randn(1,3000);

In the cascaded filters case, the unknown filter results in a delay in the
signal arriving at the summation point after both filters. To prevent the
adaptive filter from trying to adapt to a signal it has not yet seen (equivalent
to predicting the future), delay the desired signal by 32 samples, the order of
the unknown system.

Generally, you do not know the order of the system you are trying to identify.
In that case, delay the desired signal by the number of samples equal to half
the order of the adaptive filter. Delaying the input requires prepending 12
zero-values samples to x.

delay = zeros(1,12);
d = [delay x(1:2988)]; % Concatenate the delay and the signal.

You have to keep the desired signal vector d the same length as x, hence
adjust the signal element count to allow for the delay samples.

Although not generally true, for this example you know the order of the
unknown filter, so you add a delay equal to the order of the unknown filter.

For the unknown system, use a lowpass, 12th-order FIR filter.

ufilt = fir1(12,0.55,'low');

Filtering x provides the input data signal for the adaptive algorithm function.

5-38

Example of Adaptive Filter That Uses RLS Algorithm

xdata = filter(ufilt,1,x);

To set the input argument values for the adaptfilt.rls object, use the
constructor adaptfilt.rls, providing the needed arguments l, lambda, and
invcov.

For more information about the input conditions to prepare the RLS algorithm
object, refer to adaptfilt.rls in the reference section of this user’s guide.

p0 = 2*eye(13);
lambda = 0.99;
ha = adaptfilt.rls(13,lambda,p0);

Most of the process to this point is the same as the preceding examples.
However, since this example seeks to develop an inverse solution, you need to
be careful about which signal carries the data and which is the desired signal.

Earlier examples of adaptive filters use the filtered noise as the desired
signal. In this case, the filtered noise (xdata) carries the unknown system
information. With Gaussian distribution and variance of 1, the unfiltered
noise d is the desired signal. The code to run this adaptive filter example is

[y,e] = filter(ha,xdata,d);

where y returns the coefficients of the adapted filter and e contains the error
signal as the filter adapts to find the inverse of the unknown system. You can
review the returned elements of the adapted filter in the properties of ha.

The next figure presents the results of the adaptation. In the figure, the
magnitude response curves for the unknown and adapted filters show. As a
reminder, the unknown filter was a lowpass filter with cutoff at 0.55, on the
normalized frequency scale from 0 to 1.

5-39

5 Adaptive Filters

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1200

−1000

−800

−600

−400

−200

0

Normalized Frequency (×π rad/sample)

P
ha

se
 (

de
gr

ee
s)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−150

−100

−50

0

50

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Comparing the Inverse Filter to the Unknown System

Inverse Filter
Unknown System

Viewed alone (refer to the following figure), the inverse system looks like a
fair compensator for the unknown lowpass filter — a high pass filter with
linear phase.

5-40

Selected Bibliography

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1200

−1000

−800

−600

−400

−200

0

Normalized Frequency (×π rad/sample)

P
ha

se
 (

de
gr

ee
s)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−10

0

10

20

30

40

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Inverse Filter Resulting from RLS Adaptation

Selected Bibliography
[1] Hayes, Monson H., Statistical Digital Signal Processing and Modeling,
John Wiley & Sons, 1996, 493–552.

[2] Haykin, Simon, Adaptive Filter Theory, Prentice-Hall, Inc., 1996

5-41

5 Adaptive Filters

5-42

6

Using Integers and FIR
Filters with Filter Design
Toolbox

Using integers when filtering with FIR filters can make it easier to work
with certain classes of hardware, such as FPGA and ASIC processors. In
some cases, it is convenient to work directly with integers when designing
your filter. This chapter explores a few of the issues that commonly arise
when using integers with FIR filters.

• “Review of Fixed-Point Numbers” on page 6-2

• “Integers and Fixed-Point Filters” on page 6-5

• “Using the set2int Method” on page 6-17

6 Using Integers and FIR Filters with Filter Design Toolbox

Review of Fixed-Point Numbers

Terminology of Fixed-Point Numbers
Filter Design Toolbox assumes fixed-point quantities are represented in
two’s complement format, and are described using the WordLength and
FracLength parameters. It is common to represent fractional quantities of
WordLength 16 with the leftmost bit representing the sign and the remaining
bits representing the fraction to the right of the binary point. Often the
FracLength is thought of as the number of bits to the right of the binary point.
However, there is a problem with this interpretation when the FracLength is
larger than the WordLength, or when the FracLength is negative.

To work around these cases, you can use the following interpretation of a
fixed-point quantity:

The register has a WordLength of B, or in other words it has B bits. The bits
are numbered from left to right from 0 to B-1. The most significant bit (MSB)
is the leftmost bit, bB−1 . The least significant bit is the right-most bit, b0 .
You can think of the FracLength as a quantity specifying how to interpret the
bits stored and resolve the value they represent. The value represented by the
bits is determined by assigning a weight to each bit:

In this figure, L is the integer FracLength. It can assume any value,
depending on the quantization step size. L is necessary to interpret the value
that the bits represent. This value is given by the equation

6-2

Review of Fixed-Point Numbers

value b bB
B L

k
k L

k

B
= − +−

− − −

=

−

∑1
1

0

2
2 2

.

The value 2−L is the smallest possible difference between two numbers
represented in this format, otherwise known as the quantization step. In
this way, it is preferable to think of the FracLength as the negative of
the exponent used to weigh the right-most, or least-significant, bit of the
fixed-point number.

To reduce the number of bits used to represent a given quantity, you can
discard the least-significant bits. This method minimizes the quantization
error since the bits you are removing carry the least weight. For instance, the
following figure illustrates reducing the number of bits from 4 to 2:

This means that the FracLength has changed from L to L – 2.

You can think of integers as being represented with a FracLength of L = 0, so
that the quantization step becomes 2 10 = .

Suppose B = 16 and L = 0. Then the numbers that can be represented are the
integers { , ,..., , , ..., , }− − −32768 32767 1 0 1 32766 32767 .

If you need to quantize these numbers to use only 8 bits to represent
them, you will want to discard the LSBs as mentioned above, so that B=8
and L = 0–8 = –8. The increments, or quantization step then becomes

2 2 2568 8− − = =() . So you will still have the same range of values, but
with less precision, and the numbers that can be represented become
{ , ,..., , , ,... , }− − −32768 32512 256 0 256 32256 32512 .

6-3

6 Using Integers and FIR Filters with Filter Design Toolbox

With this quantization the largest possible error becomes about 256/2 when
rounding to the nearest, with a special case for 32767.

6-4

Integers and Fixed-Point Filters

Integers and Fixed-Point Filters
This section provides an example of how you can create a filter with integer
coefficients. In this example, a raised-cosine filter with floating-point
coefficients is created, and the filter coefficients are then converted to integers.

Example Filter Coefficients
To illustrate the concepts of using integers with fixed-point filters, this
example will use a raised-cosine filter:

b = firrcos(100, .25, .25, 2, 'rolloff', 'sqrt');

The coefficients of b are normalized so that the passband gain is equal to 1,
and are all smaller than 1. In order to make them integers, they will need to
be scaled. If you wanted to scale them to use 18 bits for each coefficient, the
range of possible values for the coefficients becomes:

[,] [,]− − == −−2 2 1 131072 13107117 17

Because the largest coefficient of b is positive, it will need to be scaled as close
as possible to 131071 (without overflowing) in order to minimize quantization
error. You can determine the exponent of the scale factor by executing:

B = 18; % Number of bits

L = floor(log2((2^(B-1)-1)/max(b))); % Round towards zero to avoid overflow

bsc = b*2^L;

Alternatively, you can use the fixed-point numbers autoscaling tool as follows:

bq = fi(b, true, B); % signed = true, B = 18 bits
L = bq.FractionLength;

It is a coincidence that B and L are both 18 in this case, because of the value
of the largest coefficient of b. If, for example, the maximum value of b were
0.124, L would be 20 while B (the number of bits) would remain 18.

Building the FIR Filter
First create the filter using the direct form, tapped delay line structure:

6-5

6 Using Integers and FIR Filters with Filter Design Toolbox

h = dfilt.dffir(bsc);

In order to set the required parameters, the arithmetic must be set to
fixed-point:

h.Arithmetic = 'fixed';
h.CoeffWordLength = 18;

You can check that the coefficients of h are all integers:

all(h.Numerator == round(h.Numerator))

ans =

1

Now you can examine the magnitude response of the filter using fvtool:

fvtool(h, 'Color', 'white')

This shows a large gain of 108 dB in the passband, which is due to the large
values of the coefficients— this will cause the output of the filter to be much

6-6

Integers and Fixed-Point Filters

larger than the input. A method of addressing this will be discussed in the
following sections.

Setting Filter Parameters to Work with Integers
You will need to set the input parameters of your filter to appropriate values
for working with integers. For example, if the input to the filter is from a A/D
converter with 12 bit resolution, you should set the input as follows:

h.InputWordLength = 12;
h.InputFracLength = 0;

The info method returns a summary of the filter settings.

info(h)

Discrete-Time FIR Filter (real)

Filter Structure : Direct-Form FIR

Filter Length : 101

Stable : Yes

Linear Phase : Yes (Type 1)

Arithmetic : fixed

Numerator : s18,0 -> [-131072 131072)

Input : s12,0 -> [-2048 2048)

Filter Internals : Full Precision

Output : s31,0 -> [-1073741824 1073741824) (auto determined)

Product : s29,0 -> [-268435456 268435456) (auto determined)

Accumulator : s31,0 -> [-1073741824 1073741824) (auto determined)

Round Mode : No rounding

Overflow Mode : No overflow

In this case, all the fractional lengths are now set to zero, meaning that the
filter h is set up to handle integers.

Creating a Test Signal for the Filter
You can generate an input signal for the filter by quantizing to 12 bits using
the autoscaling feature, or you can follow the same procedure that was used

6-7

6 Using Integers and FIR Filters with Filter Design Toolbox

for the coefficients, discussed previously. In this example, create a signal
with two sinusoids:

n = 0:999;
f1 = 0.1*pi; % Normalized frequency of first sinusoid
f2 = 0.8*pi; % Normalized frequency of second sinusoid
x = 0.9*sin(0.1*pi*n) + 0.9*sin(0.8*pi*n);
xq = fi(x, true, 12); % signed = true, B = 12
xsc = fi(xq.int, true, 12, 0);

Filtering the Test Signal
To filter the input signal generated above, enter the following:

ysc = filter(h, xsc);

Here ysc is a full precision output, meaning that no bits have been discarded
in the computation. This makes ysc the best possible output you can achieve
given the 12–bit input and the 18–bit coefficients. This can be verified by
filtering using double-precision floating-point and comparing the results of
the two filtering operations:

hd = double(h);
xd = double(xsc);
yd = filter(hd, xd);
norm(yd-double(ysc))

ans =

0

Now you can examine the output compared to the input. This example is
plotting only the last few samples to minimize the effect of transients:

idx = 800:950;
xscext = double(xsc(idx)');
gd = grpdelay(h, [f1 f2]);
yidx = idx + gd(1);
yscext = double(ysc(yidx)');
stem(n(idx)', [xscext, yscext]);
axis([800 950 -2.5e8 2.5e8]);

6-8

Integers and Fixed-Point Filters

legend('input', 'output');
set(gcf, 'color', 'white');

It is difficult to compare the two signals in this figure because of the large
difference in scales. This is due to the large gain of the filter, so you will
need to compensate for the filter gain:

stem(n(idx)', [2^18*xscext, yscext]);
axis([800 950 -5e8 5e8]);
legend('scaled input', 'output');

6-9

6 Using Integers and FIR Filters with Filter Design Toolbox

You can see how the signals compare much more easily once the scaling has
been done, as seen in the above figure.

Truncating the Output WordLength
If you examine the output wordlength,

ysc.WordLength

ans =

31

you will notice that the number of bits in the output is considerably greater
than in the input. Because such growth in the number of bits representing
the data may not be desirable, you may need to truncate the wordlength of
the output. As discussed in “Terminology of Fixed-Point Numbers” on page
6-2the best way to do this is to discard the least significant bits, in order

6-10

Integers and Fixed-Point Filters

to minimize error. However, if you know there are unused high order bits,
you should discard those bits as well.

To determine if there are unused most significant bits (MSBs), you can look at
where the growth in WordLength arises in the computation. In this case, the
bit growth occurs to accommodate the results of adding products of the input
(12 bits) and the coefficients (18 bits). Each of these products is 29 bits long
(you can verify this using info(h)). The bit growth due to the accumulation
of the product depends on the filter length and the coefficient values- however,
this is a worst-case determination in the sense that no assumption on the
input signal is made besides, and as a result there may be unused MSBs. You
will have to be careful though, as MSBs that are deemed unused incorrectly
will cause overflows.

Suppose you want to keep 16 bits for the output. In this case, there is no
bit-growth due to the additions, so the output bit setting will be 16 for the
wordlength and –14 for the fraction length.

Since the filtering has already been done, you can discard some bits from ysc:

yout = fi(ysc, true, 16, -14);

Alternatively, you can set the filter output bit lengths directly (this is useful if
you plan on filtering many signals):

specifyall(h);
h.OutputWordLength = 16;
h.OutputFracLength = -14;
yout2 = filter(h, xsc);

You can verify that the results are the same either way:

norm(double(yout) - double(yout2))

ans =

0

However, if you compare this to the full precision output, you will notice that
there is rounding error due to the discarded bits:

6-11

6 Using Integers and FIR Filters with Filter Design Toolbox

norm(double(yout)-double(ysc))

ans =

1.446323386867543e+005

In this case the differences are hard to spot when plotting the data, as seen
below:

stem(n(yidx), [double(yout(yidx)'), double(ysc(yidx)')]);
axis([850 950 -2.5e8 2.5e8]);
legend('Scaled Input', 'Output');
set(gcf, 'color', 'white');

Scaling the Output
Because the filter in this example has such a large gain, the output is at a
different scale than the input. This scaling is purely theoretical however,

6-12

Integers and Fixed-Point Filters

and you can scale the data however you like. In this case, you have 16 bits
for the output, but you can attach whatever scaling you choose. It would
be natural to reinterpret the output to have a weight of 2^0 (or L = 0) for
the LSB. This is equivalent to scaling the output signal down by a factor of
2^(-14). However, there is no computation or rounding error involved. You
can do this by executing the following:

yri = fi(yout.int, true, 16, 0);
stem(n(idx)', [xscext, double(yri(yidx)')]);
axis([800 950 -1.5e4 1.5e4]);
legend('input', 'rescaled output');

This plot shows that the output is still larger than the input. If you had done
the filtering in double-precision floating-point, this would not be the case—
because here more bits are being used for the output than for the input, so the
MSBs are weighted differently. You can see this another way by looking at
the magnitude response of the scaled filter:

6-13

6 Using Integers and FIR Filters with Filter Design Toolbox

[H,w] = freqz(h);
plot(w/pi, 20*log10(2^(-14)*abs(H)));

This plot shows that the passband gain is still above 0 dB.

To put the input and output on the same scale, the MSBs must be weighted
equally. The input MSB has a weight of 2^11, whereas the scaled output
MSB has a weight of 2^(29–14) = 2^15. You need to give the output MSB
a weight of 2^11 as follows:

yf = fi(zeros(size(yri)), true, 16, 4);
yf.bin = yri.bin;
stem(n(idx)', [xscext, double(yf(yidx)')]);
legend('input', 'rescaled output');

6-14

Integers and Fixed-Point Filters

This operation is equivalent to scaling the filter gain down by 2^(-18).

[H,w] = freqz(h);
plot(w/pi, 20*log10(2^(-18)*abs(H)));

6-15

6 Using Integers and FIR Filters with Filter Design Toolbox

The above plot shows a 0 dB gain in the passband, as desired.

With this final version of the output, yf is no longer an integer. However this
is only due to the interpretation- the integers represented by the bits in yf
are identical to the ones represented by the bits in yri. You can verify this
by comparing them:

max(abs(yf.int - yri.int))

ans =

0

6-16

Using the set2int Method

Using the set2int Method

In this section...

“Setting Filter Parameters to Work with Integers” on page 6-17
“Reinterpreting the Output” on page 6-18

Setting Filter Parameters to Work with Integers
The set2int method provides a convenient way of setting filter parameters to
work with integers. The method works by scaling the coefficients to integer
numbers, and setting the coefficients and input fraction length to zero. This
makes it possible for you to use floating-point coefficients directly.

h = dfilt.dffir(b);
h.Arithmetic = 'fixed';

The coefficients are represented with 18 bits and the input signal is
represented with 12 bits:

g = set2int(h, 18, 12);
g_dB = 20*log10(g)

g_dB =

1.083707984390332e+002

The set2int method returns the gain of the filter by scaling the coefficients to
integers, so the gain is always a power of 2. You can verify that the gain we
get here is consistent with the gain of the filter previously. Now you can also
check that the filter h is set up properly to work with integers:

info(h)

Discrete-Time FIR Filter (real)

Filter Structure : Direct-Form FIR

Filter Length : 101

Stable : Yes

Linear Phase : Yes (Type 1)

6-17

6 Using Integers and FIR Filters with Filter Design Toolbox

Arithmetic : fixed

Numerator : s18,0 -> [-131072 131072)

Input : s12,0 -> [-2048 2048)

Filter Internals : Full Precision

Output : s31,0 -> [-1073741824 1073741824) (auto determined)

Product : s29,0 -> [-268435456 268435456) (auto determined)

Accumulator: s31,0 -> [-1073741824 1073741824) (auto determined)

Round Mode : No rounding

Overflow Mode : No overflow

Here you can see that all fractional lengths are now set to zero, so this filter is
set up properly for working with integers.

Reinterpreting the Output
You can compare the output to the double-precision floating-point reference
output, and verify that the computation done by the filter h is done in full
precision.

yint = filter(h, xsc);
norm(yd - double(yint))

ans =

0

You can then truncate the output to only 16 bits:

yout = fi(yint, true, 16);
stem(n(yidx), [xscext, double(yout(yidx)')]);
axis([850 950 -2.5e8 2.5e8]);
legend('input', 'output');

6-18

Using the set2int Method

Once again, the plot shows that the input and output are at different scales.
In order to scale the output so that the signals can be compared more easily
in a plot, you will need to weigh the MSBs appropriately. You can compute
the new fraction length using the gain of the filter when the coefficients were
integer numbers:

WL = yout.WordLength;
FL = yout.FractionLength + log2(g);
yf2 = fi(zeros(size(yout)), true, WL, FL);
yf2.bin = yout.bin;

stem(n(idx)', [xscext, double(yf2(yidx)')]);
axis([800 950 -2e3 2e3]);
legend('input', 'rescaled output');

6-19

6 Using Integers and FIR Filters with Filter Design Toolbox

This final plot shows the filtered data re-scaled to match the input scale.

6-20

7

Reference for the Properties
of Filter Objects

• “Fixed-Point Filter Properties” on page 7-2

• “Adaptive Filter Properties” on page 7-103

• “Multirate Filter Properties” on page 7-116

7 Reference for the Properties of Filter Objects

Fixed-Point Filter Properties

In this section...

“Overview of Fixed-Point Filters” on page 7-2
“Fixed-Point Objects and Filters” on page 7-2
“Summary — Fixed-Point Filter Properties” on page 7-5
“Property Details for Fixed-Point Filters” on page 7-19

Overview of Fixed-Point Filters
There is a distinction between fixed-point filters and quantized filters —
quantized filters represent a superset that includes fixed-point filters.

When dfilt objects have their Arithmetic property set to single or fixed,
they are quantized filters. However, after you set the Arithmetic property
to fixed, the resulting filter is both quantized and fixed-point. Fixed-point
filters perform arithmetic operations without allowing the binary point to
move in response to the calculation — hence the name fixed-point. You can
find out more about fixed-point arithmetic in your Fixed-Point Toolbox™
documentation or from the Help system.

With the Arithmetic property set to single, meaning the filter uses
single-precision floating-point arithmetic, the filter allows the binary point to
move during mathematical operations, such as sums or products. Therefore
these filters cannot be considered fixed-point filters. But they are quantized
filters.

The following sections present the properties for fixed-point filters,
which includes all the properties for double-precision and single-precision
floating-point filters as well.

Fixed-Point Objects and Filters
Fixed-point filters depend in part on fixed-point objects from Fixed-Point
Toolbox software. You can see this when you display a fixed-point filter at
the command prompt.

hd=dfilt.df2t

7-2

Fixed-Point Filter Properties

hd =

FilterStructure: 'Direct-Form II Transposed'
Arithmetic: 'double'
Numerator: 1

Denominator: 1
PersistentMemory: false

States: [0x1 double]

set(hd,'arithmetic','fixed')
hd

hd =

FilterStructure: 'Direct-Form II Transposed'
Arithmetic: 'fixed'
Numerator: 1

Denominator: 1
PersistentMemory: false

States: [1x1 embedded.fi]

CoeffWordLength: 16
CoeffAutoScale: true

Signed: true

InputWordLength: 16
InputFracLength: 15

OutputWordLength: 16
OutputFracLength: 15

StateWordLength: 16
StateAutoScale: true

ProductMode: 'FullPrecision'

AccumWordLength: 40
CastBeforeSum: true

7-3

7 Reference for the Properties of Filter Objects

RoundMode: 'convergent'
OverflowMode: 'wrap'

Look at the States property, shown here

States: [1x1 embedded.fi]

The notation embedded.fi indicates that the states are being represented by
fixed-point objects, usually called fi objects. If you take a closer look at the
property States, you see how the properties of the fi object represent the
values for the filter states.

hd.states

ans =

[]

DataType: Fixed
Scaling: BinaryPoint
Signed: true

WordLength: 16
FractionLength: 15

RoundMode: round
OverflowMode: saturate
ProductMode: FullPrecision

MaxProductWordLength: 128
SumMode: FullPrecision

MaxSumWordLength: 128
CastBeforeSum: true

To learn more about fi objects (fixed-point objects) in general, refer to your
Fixed-Point Toolbox documentation. Commands like the following can help
you get the information you are looking for:

docsearch(fixed-point object)

or

docsearch(fi)

7-4

Fixed-Point Filter Properties

Either command opens the Help system and searches for information about
fixed-point objects in Fixed-Point Toolbox software.

As inputs (data to be filtered), fixed-point filters accept both regular
double-precision values and fi objects. Which you use depends on your needs.
How your filter responds to the input data is determined by the settings of the
filter properties, discussed in the next few sections.

Summary — Fixed-Point Filter Properties
Discrete-time filters in this toolbox use objects that perform the filtering and
configuration of the filter. As objects, they include properties and methods
that are often referred to as functions — not strictly the same as MATLAB
functions but mostly so) to provide filtering capability. In discrete-time filters,
or dfilt objects, many of the properties are dynamic, meaning they become
available depending on the settings of other properties in the dfilt object
or filter.

Dynamic Properties
When you use a dfilt.structure function to create a filter, MATLAB
displays the filter properties in the command window in return (unless you
end the command with a semicolon which suppresses the output display).
Generally you see six or seven properties, ranging from the property
FilterStructure to PersistentMemory. These first properties are always
present in the filter. One of the most important properties is Arithmetic. The
Arithmetic property controls all of the dynamic properties for a filter.

Dynamic properties become available when you change another property in
the filter. For example, when you change the Arithmetic property value to
fixed, the display now shows many more properties for the filter, all of them
considered dynamic. Here is an example that uses a direct form II filter.
First create the default filter:

hd=dfilt.df2

hd =

FilterStructure: 'Direct-Form II'
Arithmetic: 'double'

7-5

7 Reference for the Properties of Filter Objects

Numerator: 1
Denominator: 1

PersistentMemory: false
States: [0x1 double]

With the filter hd in the workspace, convert the arithmetic to fixed-point.
Do this by setting the property Arithmetic to fixed. Notice the display.
Instead of a few properties, the filter now has many more, each one related
to a particular part of the filter and its operation. Each of the now-visible
properties is dynamic.

hd.arithmetic='fixed'

hd =

FilterStructure: 'Direct-Form II'
Arithmetic: 'fixed'
Numerator: 1

Denominator: 1
PersistentMemory: false

States: [1x1 embedded.fi]

CoeffWordLength: 16
CoeffAutoScale: true

Signed: true

InputWordLength: 16
InputFracLength: 15

OutputWordLength: 16
OutputMode: 'AvoidOverflow'

StateWordLength: 16
StateFracLength: 15

ProductMode: 'FullPrecision'

AccumWordLength: 40
CastBeforeSum: true

7-6

Fixed-Point Filter Properties

RoundMode: 'convergent'
OverflowMode: 'wrap'

Even this list of properties is not yet complete. Changing the value of other
properties such as the ProductMode or CoeffAutoScale properties may
reveal even more properties that control how the filter works. Remember this
feature about dfilt objects and dynamic properties as you review the rest of
this section about properties of fixed-point filters.

An important distinction is you cannot change the value of a property unless
you see the property listed in the default display for the filter. Entering the
filter name at the MATLAB prompt generates the default property display
for the named filter. Using get(filtername) does not generate the default
display — it lists all of the filter properties, both those that you can change
and those that are not available yet.

The following table summarizes the properties, static and dynamic, of
fixed-point filters and provides a brief description of each. Full descriptions of
each property, in alphabetical order, follow the table.

Property Name
Valid Values [Default
Value] Brief Description

AccumFracLength Any positive or negative
integer number of bits [29]

Specifies the fraction length used
to interpret data output by the
accumulator. This is a property of
FIR filters and lattice filters. IIR
filters have two similar properties
— DenAccumFracLength and
NumAccumFracLength — that let
you set the precision for numerator and
denominator operations separately.

AccumWordLength Any positive integer number
of bits [40]

Sets the word length used to store data
in the accumulator/buffer.

Arithmetic [Double], single, fixed Defines the arithmetic the filter uses.
Gives you the options double, single,
and fixed. In short, this property
defines the operating mode for your
filter.

7-7

7 Reference for the Properties of Filter Objects

Property Name
Valid Values [Default
Value] Brief Description

CastBeforeSum [True] or false Specifies whether to cast numeric data
to the appropriate accumulator format
(as shown in the signal flow diagrams)
before performing sum operations.

CoeffAutoScale [True] or false Specifies whether the filter
automatically chooses the proper
fraction length to represent filter
coefficients without overflowing.
Turning this off by setting the value
to false enables you to change the
NumFracLength and DenFracLength
properties to specify the precision used.

CoeffFracLength Any positive or negative
integer number of bits [14]

Set the fraction length the filter
uses to interpret coefficients.
CoeffFracLength is not available until
you set CoeffAutoScale to false.
Scalar filters include this property.

CoeffWordLength Any positive integer number
of bits [16]

Specifies the word length to apply to
filter coefficients.

DenAccumFracLength Any positive or negative
integer number of bits [29]

Specifies how the filter algorithm
interprets the results of addition
operations involving denominator
coefficients.

DenFracLength Any positive or negative
integer number of bits [14]

Sets the fraction length the filter uses
to interpret denominator coefficients.
DenFracLength is always available,
but it is read-only until you set
CoeffAutoScale to false.

Denominator Any filter coefficient value
[1]

Holds the denominator coefficients for
IIR filters.

7-8

Fixed-Point Filter Properties

Property Name
Valid Values [Default
Value] Brief Description

DenProdFracLength Any positive or negative
integer number of bits [29]

Specifies how the filter algorithm
interprets the results of product
operations involving denominator
coefficients. You can change
this property value after you set
ProductMode to SpecifyPrecision.

DenStateFracLength Any positive or negative
integer number of bits [15]

Specifies the fraction length used to
interpret the states associated with
denominator coefficients in the filter.

FracDelay Any decimal value between
0 and 1 samples

Specifies the fractional delay provided
by the filter, in decimal fractions of a
sample.

FDAutoScale [True] or false Specifies whether the filter
automatically chooses the proper
scaling to represent the fractional
delay value without overflowing.
Turning this off by setting the value
to false enables you to change the
FDWordLength and FDFracLength
properties to specify the data format
applied.

FDFracLength Any positive or negative
integer number of bits [5]

Specifies the fraction length to
represent the fractional delay.

FDProdFracLength Any positive or negative
integer number of bits [34]

Specifies the fraction length to
represent the result of multiplying the
coefficients with the fractional delay.

FDProdWordLength Any positive or negative
integer number of bits [39]

Specifies the word length to represent
result of multiplying the coefficients
with the fractional delay.

FDWordLength Any positive or negative
integer number of bits [6]

Specifies the word length to represent
the fractional delay.

7-9

7 Reference for the Properties of Filter Objects

Property Name
Valid Values [Default
Value] Brief Description

DenStateWordLength Any positive integer number
of bits [16]

Specifies the word length used to
represent the states associated with
denominator coefficients in the filter.

FilterInternals [FullPrecision],
SpecifyPrecision

Controls whether the filter sets the
output word and fraction lengths, and
the accumulator word and fraction
lengths automatically to maintain the
best precision results during filtering.
The default value, FullPrecision,
sets automatic word and fraction
length determination by the filter.
SpecifyPrecision exposes the output
and accumulator related properties so
you can set your own word and fraction
lengths for them.

FilterStructure Not applicable. Describes the signal flow for the filter
object, including all of the active
elements that perform operations
during filtering — gains, delays, sums,
products, and input/output.

InputFracLength Any positive or negative
integer number of bits [15]

Specifies the fraction length the filter
uses to interpret data to be processed
by the filter.

InputWordLength Any positive integer number
of bits [16]

Specifies the word length applied to
represent input data.

Ladder Any ladder coefficients in
double-precision data type
[1]

latticearma filters include this
property to store the ladder coefficients.

LadderAccumFrac
Length

Any positive or negative
integer number of bits [29]

latticearma filters use this to define
the fraction length applied to values
output by the accumulator that stores
the results of ladder computations.

7-10

Fixed-Point Filter Properties

Property Name
Valid Values [Default
Value] Brief Description

LadderFracLength Any positive or negative
integer number of bits [14]

latticearma filters use ladder
coefficients in the signal flow. This
property determines the fraction length
used to interpret the coefficients.

Lattice Any lattice structure
coefficients. No default
value.

Stores the lattice coefficients for
lattice-based filters.

LatticeAccumFrac
Length

Any positive or negative
integer number of bits [29]

Specifies how the accumulator outputs
the results of operations on the lattice
coefficients.

LatticeFracLength Any positive or negative
integer number of bits [15]

Specifies the fraction length applied to
the lattice coefficients.

MultiplicandFrac
Length

Any positive or negative
integer number of bits [15]

Sets the fraction length for values used
in product operations in the filter.
Direct-form I transposed (df1t) filter
structures include this property.

MultiplicandWord
Length

Any positive integer number
of bits [16]

Sets the word length applied to the
values input to a multiply operation
(the multiplicands). The filter
structure df1t includes this property.

NumAccumFracLength Any positive or negative
integer number of bits [29]

Specifies how the filter algorithm
interprets the results of addition
operations involving numerator
coefficients.

Numerator Any double-precision filter
coefficients [1]

Holds the numerator coefficient values
for the filter.

NumFracLength Any positive or negative
integer number of bits [14]

Sets the fraction length used to
interpret the numerator coefficients.

7-11

7 Reference for the Properties of Filter Objects

Property Name
Valid Values [Default
Value] Brief Description

NumProdFracLength Any positive or negative
integer number of bits [29]

Specifies how the filter algorithm
interprets the results of product
operations involving numerator
coefficients. You can change
the property value after you set
ProductMode to SpecifyPrecision.

NumStateFracLength Any positive or negative
integer number of bits [15]

For IIR filters, this defines the fraction
length applied to the numerator states
of the filter. Specifies the fraction
length used to interpret the states
associated with numerator coefficients
in the filter.

NumStateWordLength Any positive integer number
of bits [16]

For IIR filters, this defines the word
length applied to the numerator states
of the filter. Specifies the word length
used to interpret the states associated
with numerator coefficients in the
filter.

OutputFracLength Any positive or negative
integer number of bits —
[15] or [12] bits depending
on the filter structure

Determines how the filter interprets
the filtered data. You can change the
value of OutputFracLength after you
set OutputMode to SpecifyPrecision.

7-12

Fixed-Point Filter Properties

Property Name
Valid Values [Default
Value] Brief Description

OutputMode [AvoidOverflow],
BestPrecision,
SpecifyPrecision

Sets the mode the filter uses to scale
the filtered input data. You have the
following choices:

• AvoidOverflow — directs the filter
to set the output data fraction length
to avoid causing the data to overflow.

• BestPrecision — directs the filter
to set the output data fraction length
to maximize the precision in the
output data.

• SpecifyPrecision — lets you set
the fraction length used by the
filtered data.

OutputWordLength Any positive integer number
of bits [16]

Determines the word length used for
the filtered data.

OverflowMode Saturate or [wrap] Sets the mode used to respond to
overflow conditions in fixed-point
arithmetic. Choose from either
saturate (limit the output to
the largest positive or negative
representable value) or wrap (set
overflowing values to the nearest
representable value using modular
arithmetic. The choice you make
affects only the accumulator and
output arithmetic. Coefficient and
input arithmetic always saturates.
Finally, products never overflow — hey
maintain full precision.

7-13

7 Reference for the Properties of Filter Objects

Property Name
Valid Values [Default
Value] Brief Description

ProductFracLength Any positive or negative
integer number of bits [29]

For the output from a product
operation, this sets the fraction length
used to interpret the numeric data.
This property becomes writable (you
can change the value) after you set
ProductMode to SpecifyPrecision.

ProductMode [FullPrecision], KeepLSB,
KeepMSB, SpecifyPrecision

Determines how the filter handles the
output of product operations. Choose
from full precision (FullPrecision), or
whether to keep the most significant
bit (KeepMSB) or least significant bit
(KeepLSB) in the result when you need
to shorten the data words. For you to
be able to set the precision (the fraction
length) used by the output from the
multiplies, you set ProductMode to
SpecifyPrecision.

ProductWordLength Any positive number of
bits. Default is 16 or 32
depending on the filter
structure

Specifies the word length to use for the
results of multiplication operations.
This property becomes writable (you
can change the value) after you set
ProductMode to SpecifyPrecision.

PersistentMemory True or [false] Specifies whether to reset the filter
states and memory before each filtering
operation. Lets you decide whether
your filter retains states from previous
filtering runs. True is the default
setting.

7-14

Fixed-Point Filter Properties

Property Name
Valid Values [Default
Value] Brief Description

RoundMode [Convergent], ceil, fix, floor,
nearest, round

Sets the mode the filter uses to
quantize numeric values when the
values lie between representable
values for the data format (word and
fraction lengths).

• ceil - Round toward positive
infinity.

• convergent - Round to the closest
representable integer. Ties round to
the nearest even stored integer. This
is the least biased of the methods
available in this software.

• fix - Round toward zero.

• floor - Round toward negative
infinity.

• nearest - Round toward nearest.
Ties round toward positive infinity.

• round - Round toward nearest.
Ties round toward negative
infinity for negative numbers, and
toward positive infinity for positive
numbers.

The choice you make affects only the
accumulator and output arithmetic.
Coefficient and input arithmetic always
round. Finally, products never overflow
— they maintain full precision.

7-15

7 Reference for the Properties of Filter Objects

Property Name
Valid Values [Default
Value] Brief Description

ScaleValueFracLength Any positive or negative
integer number of bits [29]

Scale values work with SOS filters.
Setting this property controls how your
filter interprets the scale values by
setting the fraction length. Available
only when you disable CoeffAutoScale
by setting it to false.

ScaleValues [2 x 1 double] array with
values of 1

Stores the scaling values for sections
in SOS filters.

Signed [True] or false Specifies whether the filter uses signed
or unsigned fixed-point coefficients.
Only coefficients reflect this property
setting.

sosMatrix [1 0 0 1 0 0] Holds the filter coefficients as property
values. Displays the matrix in the
format [sections x coefficients/section
datatype]. A [15x6 double] SOS
matrix represents a filter with 6
coefficients per section and 15 sections,
using data type double to represent
the coefficients.

SectionInputAuto
Scale

[True] or false Specifies whether the filter
automatically chooses the proper
fraction length to prevent overflow
by data entering a section of an
SOS filter. Setting this property
to false enables you to change the
SectionInputFracLength property to
specify the precision used. Available
only for SOS filters.

7-16

Fixed-Point Filter Properties

Property Name
Valid Values [Default
Value] Brief Description

SectionInputFrac
Length

Any positive or negative
integer number of bits [29]

Section values work with SOS filters.
Setting this property controls how
your filter interprets the section
values between sections of the filter
by setting the fraction length. This
applies to data entering a section.
Compare to SectionOutputFracLength.
Available only when you disable
SectionInputAutoScale by setting it
to false.

SectionInputWord
Length

Any positive or negative
integer number of bits [29]

Sets the word length used to represent
the data moving into a section of an
SOS filter.

SectionOutputAuto
Scale

[True] or false Specifies whether the filter
automatically chooses the proper
fraction length to prevent overflow
by data leaving a section of an
SOS filter. Setting this property
to false enables you to change the
SectionOutputFracLength property to
specify the precision used.

SectionOutputFrac
Length

Any positive or negative
integer number of bits [29]

Section values work with SOS filters.
Setting this property controls how
your filter interprets the section
values between sections of the filter
by setting the fraction length. This
applies to data leaving a section.
Compare to SectionInputFracLength.
Available after you disable
SectionOutputAutoScale by setting it
to false.

SectionOutputWord
Length

Any positive or negative
integer number of bits [32]

Sets the word length used to represent
the data moving out of one section of
an SOS filter.

7-17

7 Reference for the Properties of Filter Objects

Property Name
Valid Values [Default
Value] Brief Description

StateFracLength Any positive or negative
integer number of bits [15]

Lets you set the fraction length applied
to interpret the filter states.

States [1x1 embedded fi] Contains the filter states before,
during, and after filter operations.
States act as filter memory between
filtering runs or sessions. Notice
that the states use fi objects, with
the associated properties from
those objects. For details, refer to
filtstates in your Signal Processing
Toolbox documentation or in the Help
system.

StateWordLength Any positive integer number
of bits [16]

Sets the word length used to represent
the filter states.

TapSumFracLength Any positive or negative
integer number of bits [15]

Sets the fraction length used to
represent the filter tap values in
addition operations. This is available
after you set TapSumMode to false.
Symmetric and antisymmetric FIR
filters include this property.

7-18

Fixed-Point Filter Properties

Property Name
Valid Values [Default
Value] Brief Description

TapSumMode FullPrecision,
KeepLSB, [KeepMSB],
SpecifyPrecision

Determines how the accumulator
outputs stored that involve filter tap
weights. Choose from full precision
(FullPrecision) to prevent overflows,
or whether to keep the most significant
bits (KeepMSB) or least significant
bits (KeepLSB) when outputting
results from the accumulator. To let
you set the precision (the fraction
length) used by the output from the
accumulator, set FilterInternals to
SpecifyPrecision.

Symmetric and antisymmetric FIR
filters include this property.

TapSumWordLength Any positive number of bits
[17]

Sets the word length used to represent
the filter tap weights during addition.
Symmetric and antisymmetric FIR
filters include this property.

Property Details for Fixed-Point Filters
When you create a fixed-point filter, you are creating a filter object (a dfilt
object). In this manual, the terms filter, dfilt object, and filter object are
used interchangeably. To filter data, you apply the filter object to your data
set. The output of the operation is the data filtered by the filter and the filter
property values.

Filter objects have properties to which you assign property values. You use
these property values to assign various characteristics to the filters you
create, including

• The type of arithmetic to use in filtering operations

• The structure of the filter used to implement the filter (not a property you
can set or change — you select it by the dfilt.structure function you
choose)

7-19

7 Reference for the Properties of Filter Objects

• The locations of quantizations and cast operations in the filter

• The data formats used in quantizing, casting, and filtering operations

Details of the properties associated with fixed-point filters are described in
alphabetical order on the following pages.

AccumFracLength
Except for state-space filters, all dfilt objects that use fixed arithmetic
have this property that defines the fraction length applied to data in the
accumulator. Combined with AccumWordLength, AccumFracLength helps
fully specify how the accumulator outputs data after processing addition
operations. As with all fraction length properties, AccumFracLength can be
any integer, including integers larger than AccumWordLength, and positive
or negative integers.

AccumWordLength
You use AccumWordLength to define the data word length used in the
accumulator. Set this property to a value that matches your intended
hardware. For example, many digital signal processors use 40-bit
accumulators, so set AccumWordLength to 40 in your fixed-point filter:

set(hq,'arithmetic','fixed');
set(hq,'AccumWordLength',40);

Note that AccumWordLength only applies to filters whose Arithmetic property
value is fixed.

Arithmetic
Perhaps the most important property when you are working with dfilt
objects, Arithmetic determines the type of arithmetic the filter uses, and the
properties or quantizers that compose the fixed-point or quantized filter. You
use strings to set the Arithmetic property value.

The next table shows the valid strings for the Arithmetic property. Following
the table, each property string appears with more detailed information about
what happens when you select the string as the value for Arithmetic in
your dfilt.

7-20

Fixed-Point Filter Properties

Arithmetic
Property
String Brief Description of Effect on the Filter

double All filtering operations and coefficients use
double-precision floating-point representations and
math. When you use dfilt.structure to create a filter
object, double is the default value for the Arithmetic
property.

single All filtering operations and coefficients use
single-precision floating-point representations and math.

fixed This string applies selected default values for the
properties in the fixed-point filter object, including
such properties as coefficient word lengths, fraction
lengths, and various operating modes. Generally, the
default values match those you use on many digital
signal processors. Allows signed fixed data types only.
Fixed-point arithmetic filters are available only when you
install Fixed-Point Toolbox software with this toolbox.

double. When you use one of the dfilt.structure methods to create a
filter, the Arithmetic property value is double by default. Your filter is
identical to the same filter without the Arithmetic property, as you would
create if you used Signal Processing Toolbox software.

Double means that the filter uses double-precision floating-point arithmetic
in all operations while filtering:

• All input to the filter must be double data type. Any other data type
returns an error.

• The states and output are doubles as well.

• All internal calculations are done in double math.

When you use double data type filter coefficients, the reference and quantized
(fixed-point) filter coefficients are identical. The filter stores the reference
coefficients as double data type.

7-21

7 Reference for the Properties of Filter Objects

single. When your filter should use single-precision floating-point arithmetic,
set the Arithmetic property to single so all arithmetic in the filter processing
gets restricted to single-precision data type.

• Input data must be single data type. Other data types return errors.

• The filter states and filter output use single data type.

When you choose single, you can provide the filter coefficients in either of
two ways:

• Double data type coefficients. With Arithmetic set to single, the filter
casts the double data type coefficients to single data type representation.

• Single data type. These remain unchanged by the filter.

Depending on whether you specified single or double data type coefficients,
the reference coefficients for the filter are stored in the data type you provided.
If you provide coefficients in double data type, the reference coefficients are
double as well. Providing single data type coefficients generates single data
type reference coefficients. Note that the arithmetic used by the reference
filter is always double.

When you use reffilter to create a reference filter from the reference
coefficients, the resulting filter uses double-precision versions of the reference
filter coefficients.

To set the Arithmetic property value, create your filter, then use set to
change the Arithmetic setting, as shown in this example using a direct
form FIR filter.

b=fir1(7,0.45);

hd=dfilt.dffir(b)

hd =

FilterStructure: 'Direct-Form FIR'
Arithmetic: 'double'
Numerator: [1x8 double]

PersistentMemory: false

7-22

Fixed-Point Filter Properties

States: [7x1 double]

set(hd,'arithmetic','single')
hd

hd =

FilterStructure: 'Direct-Form FIR'
Arithmetic: 'single'
Numerator: [1x8 double]

PersistentMemory: false
States: [7x1 single]

fixed. Converting your dfilt object to use fixed arithmetic results in a filter
structure that uses properties and property values to match how the filter
would behave on digital signal processing hardware.

Note The fixed option for the property Arithmetic is available only when
you install Fixed-Point Toolbox software as well as Filter Design Toolbox
software.

After you set Arithmetic to fixed, you are free to change any property value
from the default value to a value that more closely matches your needs. You
cannot, however, mix floating-point and fixed-point arithmetic in your filter
when you select fixed as the Arithmetic property value. Choosing fixed
restricts you to using either fixed-point or floating point throughout the filter
(the data type must be homogenous). Also, all data types must be signed.
fixed does not support unsigned data types except for unsigned coefficients
when you set the property Signed to false. Mixing word and fraction lengths
within the fixed object is acceptable. In short, using fixed arithmetic assumes

• fixed word length.

• fixed size and dedicated accumulator and product registers.

• the ability to do either saturation or wrap arithmetic.

• that multiple rounding modes are available.

7-23

7 Reference for the Properties of Filter Objects

Making these assumptions simplifies your job of creating fixed-point filters by
reducing repetition in the filter construction process, such as only requiring
you to enter the accumulator word size once, rather than for each step that
uses the accumulator.

Default property values are a starting point in tailoring your filter to common
hardware, such as choosing 40-bit word length for the accumulator, or 16-bit
words for data and coefficients.

In this dfilt object example, get returns the default values for dfilt.df1t
structures.

[b,a]=butter(6,0.45);
hd=dfilt.df1(b,a)

hd =

FilterStructure: 'Direct-Form I'
Arithmetic: 'double'
Numerator: [1x7 double]

Denominator: [1x7 double]
PersistentMemory: false

States: Numerator: [6x1 double]
Denominator:[6x1 double]

set(hd,'arithmetic','fixed')
get(hd)

PersistentMemory: false
FilterStructure: 'Direct-Form I'

States: [1x1 filtstates.dfiir]
Numerator: [1x7 double]

Denominator: [1x7 double]
Arithmetic: 'fixed'

CoeffWordLength: 16
CoeffAutoScale: 1

Signed: 1
RoundMode: 'convergent'

OverflowMode: 'wrap'
InputWordLength: 16

7-24

Fixed-Point Filter Properties

InputFracLength: 15
ProductMode: 'FullPrecision'

OutputWordLength: 16
OutputFracLength: 15

NumFracLength: 16
DenFracLength: 14

ProductWordLength: 32
NumProdFracLength: 31
DenProdFracLength: 29

AccumWordLength: 40
NumAccumFracLength: 31
DenAccumFracLength: 29

CastBeforeSum: 1

Here is the default display for hd.

hd

hd =

FilterStructure: 'Direct-Form I'
Arithmetic: 'fixed'
Numerator: [1x7 double]

Denominator: [1x7 double]
PersistentMemory: false

States: Numerator: [6x1 fi]
Denominator:[6x1 fi]

CoeffWordLength: 16
CoeffAutoScale: true

Signed: true

InputWordLength: 16
InputFracLength: 15

OutputWordLength: 16
OutputFracLength: 15

ProductMode: 'FullPrecision'

7-25

7 Reference for the Properties of Filter Objects

AccumWordLength: 40
CastBeforeSum: true

RoundMode: 'convergent'
OverflowMode: 'wrap'

This second example shows the default property values for
dfilt.latticemamax filter objects, using the coefficients from an fir1 filter.

b=fir1(7,0.45)

hdlat=dfilt.latticemamax(b)

hdlat =

FilterStructure: [1x45 char]
Arithmetic: 'double'

Lattice: [1x8 double]
PersistentMemory: false

States: [8x1 double]

hdlat.arithmetic='fixed'

hdlat =

FilterStructure: [1x45 char]
Arithmetic: 'fixed'

Lattice: [1x8 double]
PersistentMemory: false

States: [1x1 embedded.fi]

CoeffWordLength: 16
CoeffAutoScale: true

Signed: true

InputWordLength: 16
InputFracLength: 15

7-26

Fixed-Point Filter Properties

OutputWordLength: 16
OutputMode: 'AvoidOverflow'

StateWordLength: 16
StateFracLength: 15

ProductMode: 'FullPrecision'

AccumWordLength: 40
CastBeforeSum: true

RoundMode: 'convergent'
OverflowMode: 'wrap'

Unlike the single or double options for Arithmetic, fixed uses properties
to define the word and fraction lengths for each portion of your filter. By
changing the property value of any of the properties, you control your filter
performance. Every word length and fraction length property is independent
— set the one you need and the others remain unchanged, such as setting the
input word length with InputWordLength, while leaving the fraction length
the same.

d=fdesign.lowpass('n,fc',6,0.45)

d =

Response: 'Lowpass with cutoff'
Specification: 'N,Fc'

Description: {2x1 cell}
NormalizedFrequency: true

Fs: 'Normalized'
FilterOrder: 6

Fcutoff: 0.4500

designmethods(d)

Design Methods for class fdesign.lowpass:

7-27

7 Reference for the Properties of Filter Objects

butter

hd=butter(d)

hd =

FilterStructure: 'Direct-Form II, Second-Order Sections'
Arithmetic: 'double'
sosMatrix: [3x6 double]

ScaleValues: [4x1 double]
PersistentMemory: false

States: [2x3 double]

hd.arithmetic='fixed'

hd =

FilterStructure: 'Direct-Form II, Second-Order Sections'
Arithmetic: 'fixed'
sosMatrix: [3x6 double]

ScaleValues: [4x1 double]
PersistentMemory: false

States: [1x1 embedded.fi]

CoeffWordLength: 16
CoeffAutoScale: true

Signed: true

InputWordLength: 16
InputFracLength: 15

SectionInputWordLength: 16
SectionInputAutoScale: true

SectionOutputWordLength: 16
Section OutputAutoScale: true

OutputWordLength: 16
OutputMode: 'AvoidOverflow'

7-28

Fixed-Point Filter Properties

StateWordLength: 16
StateFracLength: 15

ProductMode: 'FullPrecision'

AccumWordLength: 40
CastBeforeSum: true

RoundMode: 'convergent'
OverflowMode: 'wrap'

hd.inputWordLength=12

hd =

FilterStructure: 'Direct-Form II, Second-Order Sections'
Arithmetic: 'fixed'
sosMatrix: [3x6 double]

ScaleValues: [4x1 double]
PersistentMemory: false

States: [1x1 embedded.fi]

CoeffWordLength: 16
CoeffAutoScale: true

Signed: true

InputWordLength: 12
InputFracLength: 15

SectionInputWordLength: 16
SectionInputAutoScale: true

SectionOutputWordLength: 16
SectionOutputAutoScale: true

OutputWordLength: 16
OutputMode: 'AvoidOverflow'

StateWordLength: 16

7-29

7 Reference for the Properties of Filter Objects

StateFracLength: 15

ProductMode: 'FullPrecision'

AccumWordLength: 40
CastBeforeSum: true

RoundMode: 'convergent'
OverflowMode: 'wrap'

Notice that the properties for the lattice filter hdlat and direct-form II filter hd
are different, as befits their differing filter structures. Also, some properties
are common to both objects, such as RoundMode and PersistentMemory and
behave the same way in both objects.

Notes About Fraction Length, Word Length, and Precision. Word
length and fraction length combine to make the format for a fixed-point
number, where word length is the number of bits used to represent the value
and fraction length specifies, in bits, the location of the binary point in the
fixed-point representation. Therein lies a problem — fraction length, which
you specify in bits, can be larger than the word length, or a negative number
of bits. This section explains how that idea works and how you might use it.

Unfortunately fraction length is somewhat misnamed (although it continues
to be used in this User’s Guide and elsewhere for historical reasons).

Fraction length defined as the number of fractional bits (bits to the right of the
binary point) is true only when the fraction length is positive and less than
or equal to the word length. In MATLAB format notation you can use [word
length fraction length]. For example, for the format [16 16], the second 16 (the
fraction length) is the number of fractional bits or bits to the right of the
binary point. In this example, all 16 bits are to the right of the binary point.

But it is also possible to have fixed-point formats of [16 18] or [16 -45]. In
these cases the fraction length can no longer be the number of bits to the right
of the binary point since the format says the word length is 16 — there cannot
be 18 fraction length bits on the right. And how can there be a negative
number of bits for the fraction length, such as [16 -45]?

7-30

Fixed-Point Filter Properties

A better way to think about fixed-point format [word length fraction length]
and what it means is that the representation of a fixed-point number is a
weighted sum of powers of two driven by the fraction length, or the two’s
complement representation of the fixed-point number.

Consider the format [B L], where the fraction length L can be positive,
negative, 0, greater than B (the word length) or less than B. (B and L are
always integers and B is always positive.)

Given a binary string b(1) b(2) b(3) ... b(B), to determine the two’s-complement
value of the string in the format described by [B L], use the value of the
individual bits in the binary string in the following formula, where b(1) is the
first binary bit (and most significant bit, MSB), b(2) is the second, and on up
to b(B).

The decimal numeric value that those bits represent is given by

value =-b(1)*2^(B-L-1)+b(2)*2^(B-L-2)+b(3)*2^(B-L-3)+...+ b(B)*2^(-L)

L, the fraction length, represents the negative of the weight of the last, or
least significant bit (LSB). L is also the step size or the precision provided by a
given fraction length.

Precision. Here is how precision works.

When all of the bits of a binary string are zero except for the LSB (which is
therefore equal to one), the value represented by the bit string is given by
2(-L). If L is negative, for example L=-16, the value is 216. The smallest step
between numbers that can be represented in a format where L=-16 is given
by 1 x 216 (the rightmost term in the formula above), which is 65536. Note
the precision does not depend on the word length.

Take a look at another example. When the word length set to 8 bits, the
decimal value 12 is represented in binary by 00001100. That 12 is the
decimal equivalent of 00001100 tells you that you are using [8 0] data format
representation — the word length is 8 bits and fraction length 0 bits, and the
step size or precision (the smallest difference between two adjacent values
in the format [8,0], is 20=1.

7-31

7 Reference for the Properties of Filter Objects

Suppose you plan to keep only the upper 5 bits and discard the other three.
The resulting precision after removing the right-most three bits comes from
the weight of the lowest remaining bit, the fifth bit from the left, which is
23=8, so the format would be [5,-3].

Note that in this format the step size is 8, I cannot represent numbers that
are between multiples of 8.

In MATLAB, with Fixed-Point Toolbox software installed:

x=8;
q=quantizer([8,0]); % Word length = 8, fraction length = 0
xq=quantize(q,x);
binxq=num2bin(q,xq);
q1=quantizer([5 -3]); % Word length = 5, fraction length = -3
xq1 = quantize(q1,xq);
binxq1=num2bin(q1,xq1);
binxq

binxq =

00001000

binxq1

binxq1 =

00001

But notice that in [5,-3] format, 00001 is the two’s complement representation
for 8, not for 1; q = quantizer([8 0]) and q1 = quantizer([5 -3]) are
not the same. They cover the about the same range — range(q)>range(q1)
— but their quantization step is different — eps(q)= 8, and eps(q1)=1.

Look at one more example. When you construct a quantizer q

q = quantizer([a,b])

the first element in [a,b] is a, the word length used for quantization. The
second element in the expression, b, is related to the quantization step —
the numerical difference between the two closest values that the quantizer

7-32

Fixed-Point Filter Properties

can represent. This is also related to the weight given to the LSB. Note that
2^(-b) = eps(q).

Now construct two quantizers, q1 and q2. Let q1 use the format [32,0] and let
q2 use the format [16, -16].

q1 = quantizer([32,0])
q2 = quantizer([16,-16])

Quantizers q1 and q2 cover the same range, but q2 has less precision. It
covers the range in steps of 216, while q covers the range in steps of 1.

This lost precision is due to (or can be used to model) throwing out 16
least-significant bits.

An important point to understand is that in dfilt objects and filtering you
control which bits are carried from the sum and product operations in the
filter to the filter output by setting the format for the output from the sum
or product operation.

For instance, if you use [16 0] as the output format for a 32-bit result from a
sum operation when the original format is [32 0], you take the lower 16 bits
from the result. If you use [16 -16], you take the higher 16 bits of the original
32 bits. You could even take 16 bits somewhere in between the 32 bits by
choosing something like [16 -8], but you probably do not want to do that.

Filter scaling is directly implicated in the format and precision for a filter.
When you know the filter input and output formats, as well as the filter
internal formats, you can scale the inputs or outputs to stay within the format
ranges. For more information about scaling filters, refer to “Converting from
Floating-Point to Fixed-Point”.

Notice that overflows or saturation might occur at the filter input, filter
output, or within the filter itself, such as during add or multiply or accumulate
operations. Improper scaling at any point in the filter can result in numerical
errors that dramatically change the performance of your fixed-point filter
implementation.

7-33

7 Reference for the Properties of Filter Objects

CastBeforeSum
Setting the CastBeforeSum property determines how the filter handles
the input values to sum operations in the filter. After you set your
filter Arithmetic property value to fixed, you have the option of using
CastBeforeSum to control the data type of some inputs (addends) to
summations in your filter. To determine which addends reflect the
CastBeforeSum property setting, refer to the reference page for the signal
flow diagram for the filter structure.

CastBeforeSum specifies whether to cast selected addends to summations in
the filter to the output format from the addition operation before performing
the addition. When you specify true for the property value, the results of the
affected sum operations match most closely the results found on most digital
signal processors. Performing the cast operation before the summation adds
one or two additional quantization operations that can add error sources
to your filter results.

Specifying CastBeforeSum to be false prevents the addends from being cast
to the output format before the addition operation. Choose this setting to get
the most accurate results from summations without considering the hardware
your filter might use.

Notice that the output format for every sum operation reflects the value of
the output property specified in the filter structure diagram. Which input
property is referenced by CastBeforeSum depends on the structure.

Property Value Description

false Configures filter summation operations to retain the
addends in the format carried from the previous
operation.

true Configures filter summation operations to convert the
input format of the addends to match the summation
output format before performing the summation
operation. Usually this generates results from the
summation that more closely match those found from
digital signal processors

7-34

Fixed-Point Filter Properties

Another point — with CastBeforeSum set to false, the filter realization
process inserts an intermediate data type format to hold temporarily the full
precision sum of the inputs. A separate Convert block performs the process
of casting the addition result to the accumulator format. This intermediate
data format occurs because the Sum block in Simulink always casts input
(addends) to the output data type.

Diagrams of CastBeforeSum Settings. When CastBeforeSum is false,
sum elements in filter signal flow diagrams look like this:

�
�##������
�

showing that the input data to the sum operations (the addends) retain
their format word length and fraction length from previous operations. The
addition process uses the existing input formats and then casts the output to
the format defined by AccumFormat. Thus the output data has the word length
and fraction length defined by AccumWordLength and AccumFracLength.

When CastBeforeSum is true, sum elements in filter signal flow diagrams
look like this:

�
�##������
�

$
��

$
��
�##������
�

�##������
�

7-35

7 Reference for the Properties of Filter Objects

showing that the input data gets recast to the accumulator format word
length and fraction length (AccumFormat) before the sum operation occurs.
The data output by the addition operation has the word length and fraction
length defined by AccumWordLength and AccumFracLength.

CoeffAutoScale
How the filter represents the filter coefficients depends on the property value
of CoeffAutoScale. When you create a dfilt object, you use coefficients in
double-precision format. Converting the dfilt object to fixed-point arithmetic
forces the coefficients into a fixed-point representation. The representation the
filter uses depends on whether the value of CoeffAutoScale is true or false.

• CoeffAutoScale = true means the filter chooses the fraction length to
maintain the value of the coefficients as close to the double-precision values
as possible. When you change the word length applied to the coefficients,
the filter object changes the fraction length to try to accommodate the
change. true is the default setting.

• CoeffAutoScale = false removes the automatic scaling of the fraction
length for the coefficients and exposes the property that controls the
coefficient fraction length so you can change it. For example, if the
filter is a direct form FIR filter, setting CoeffAutoScale = false
exposes the NumFracLength property that specifies the fraction length
applied to numerator coefficients. If the filter is an IIR filter, setting
CoeffAutoScale = false exposes both the NumFracLength and
DenFracLength properties.

Here is an example of using CoeffAutoScale with a direct form filter.

hd2=dfilt.dffir([0.3 0.6 0.3])

hd2 =

FilterStructure: 'Direct-Form FIR'
Arithmetic: 'double'
Numerator: [0.3000 0.6000 0.3000]

PersistentMemory: false
States: [2x1 double]

hd2.arithmetic='fixed'

7-36

Fixed-Point Filter Properties

hd2 =

FilterStructure: 'Direct-Form FIR'
Arithmetic: 'fixed'
Numerator: [0.3000 0.6000 0.3000]

PersistentMemory: false
States: [1x1 embedded.fi]

CoeffWordLength: 16
CoeffAutoScale: true

Signed: true

InputWordLength: 16
InputFracLength: 15

OutputWordLength: 16
OutputMode: 'AvoidOverflow'

ProductMode: 'FullPrecision'

AccumWordLength: 40
CastBeforeSum: true

RoundMode: 'convergent'
OverflowMode: 'wrap'

To this point, the filter coefficients retain the original values from when
you created the filter as shown in the Numerator property. Now change the
CoeffAutoScale property value from true to false.

hd2.coeffautoScale=false

hd2 =

FilterStructure: 'Direct-Form FIR'
Arithmetic: 'fixed'
Numerator: [0.3000 0.6000 0.3000]

PersistentMemory: false
States: [1x1 embedded.fi]

7-37

7 Reference for the Properties of Filter Objects

CoeffWordLength: 16
CoeffAutoScale: false
NumFracLength: 15

Signed: true

InputWordLength: 16
InputFracLength: 15

OutputWordLength: 16
OutputMode: 'AvoidOverflow'

ProductMode: 'FullPrecision'

AccumWordLength: 40
CastBeforeSum: true

RoundMode: 'convergent'
OverflowMode: 'wrap'

With the NumFracLength property now available, change the word length
to 5 bits.

Notice the coefficient values. Setting CoeffAutoScale to false removes the
automatic fraction length adjustment and the filter coefficients cannot be
represented by the current format of [5 15] — a word length of 5 bits, fraction
length of 15 bits.

hd2.coeffwordlength=5

hd2 =

FilterStructure: 'Direct-Form FIR'
Arithmetic: 'fixed'
Numerator: [4.5776e-004 4.5776e-004 4.5776e-004]

PersistentMemory: false
States: [1x1 embedded.fi]

CoeffWordLength: 5
CoeffAutoScale: false

7-38

Fixed-Point Filter Properties

NumFracLength: 15
Signed: true

InputWordLength: 16
InputFracLength: 15

OutputWordLength: 16
OutputMode: 'AvoidOverflow'

ProductMode: 'FullPrecision'

AccumWordLength: 40
CastBeforeSum: true

RoundMode: 'convergent'
OverflowMode: 'wrap'

Restoring CoeffAutoScale to true goes some way to fixing the coefficient
values. Automatically scaling the coefficient fraction length results in setting
the fraction length to 4 bits. You can check this with get(hd2) as shown
below.

hd2.coeffautoScale=true

hd2 =

FilterStructure: 'Direct-Form FIR'
Arithmetic: 'fixed'
Numerator: [0.3125 0.6250 0.3125]

PersistentMemory: false
States: [1x1 embedded.fi]

CoeffWordLength: 5
CoeffAutoScale: true

Signed: true

InputWordLength: 16
InputFracLength: 15

OutputWordLength: 16

7-39

7 Reference for the Properties of Filter Objects

OutputMode: 'AvoidOverflow'

ProductMode: 'FullPrecision'

AccumWordLength: 40
CastBeforeSum: true

RoundMode: 'convergent'
OverflowMode: 'wrap'

get(hd2)
PersistentMemory: false

FilterStructure: 'Direct-Form FIR'
States: [1x1 embedded.fi]

Numerator: [0.3125 0.6250 0.3125]
Arithmetic: 'fixed'

CoeffWordLength: 5
CoeffAutoScale: 1

Signed: 1
RoundMode: 'convergent'

OverflowMode: 'wrap'
InputWordLength: 16
InputFracLength: 15

OutputWordLength: 16
OutputMode: 'AvoidOverflow'

ProductMode: 'FullPrecision'
NumFracLength: 4

OutputFracLength: 12
ProductWordLength: 21
ProductFracLength: 19

AccumWordLength: 40
AccumFracLength: 19

CastBeforeSum: 1

Clearly five bits is not enough to represent the coefficients accurately.

CoeffFracLength
Fixed-point scalar filters that you create using dfilt.scalar use this
property to define the fraction length applied to the scalar filter coefficients.

7-40

Fixed-Point Filter Properties

Like the coefficient-fraction-length-related properties for the FIR, lattice, and
IIR filters, CoeffFracLength is not displayed for scalar filters until you set
CoeffAutoScale to false. Once you change the automatic scaling you can set
the fraction length for the coefficients to any value you require.

As with all fraction length properties, the value you enter here can be any
negative or positive integer, or zero. Fraction length can be larger than the
associated word length, as well. By default, the value is 14 bits, with the
CoeffWordlength of 16 bits.

CoeffWordLength
One primary consideration in developing filters for hardware is the length
of a data word. CoeffWordLength defines the word length for these data
storage and arithmetic locations:

• Numerator and denominator filter coefficients

• Tap sum in dfilt.dfsymfir and dfilt.dfasymfir filter objects

• Section input, multiplicand, and state values in direct-form SOS filter
objects such as dfilt.df1t and dfilt.df2

• Scale values in second-order filters

• Lattice and ladder coefficients in lattice filter objects, such as
dfilt.latticearma and dfilt.latticemamax

• Gain in dfilt.scalar

Setting this property value controls the word length for the data listed. In
most cases, the data words in this list have separate fraction length properties
to define the associated fraction lengths.

Any positive, integer word length works here, limited by the machine you use
to develop your filter and the hardware you use to deploy your filter.

DenAccumFracLength
Filter structures df1, df1t, df2, and df2t that use fixed arithmetic have this
property that defines the fraction length applied to denominator coefficients
in the accumulator. In combination with AccumWordLength, the properties
fully specify how the accumulator outputs data stored there.

7-41

7 Reference for the Properties of Filter Objects

As with all fraction length properties, DenAccumFracLength can be any
integer, including integers larger than AccumWordLength, and positive or
negative integers. To be able to change the property value for this property,
you set FilterInternals to SpecifyPrecision.

DenFracLength
Property DenFracLength contains the value that specifies the fraction length
for the denominator coefficients for your filter. DenFracLength specifies the
fraction length used to interpret the data stored in C. Used in combination
with CoeffWordLength, these two properties define the interpretation of the
coefficients stored in the vector that contains the denominator coefficients.

As with all fraction length properties, the value you enter here can be any
negative or positive integer, or zero. Fraction length can be larger than the
associated word length, as well. By default, the value is 15 bits, with the
CoeffWordLength of 16 bits.

Denominator
The denominator coefficients for your IIR filter, taken from the prototype you
start with, are stored in this property. Generally this is a 1-by-N array of data
in double format, where N is the length of the filter.

All IIR filter objects include Denominator, except the lattice-based filters
which store their coefficients in the Lattice property, and second-order
section filters, such as dfilt.df1tsos, which use the SosMatrix property to
hold the coefficients for the sections.

DenProdFracLength
A property of all of the direct form IIR dfilt objects, except the ones that
implement second-order sections, DenProdFracLength specifies the fraction
length applied to data output from product operations that the filter performs
on denominator coefficients.

Looking at the signal flow diagram for the dfilt.df1t filter, for example, you
see that denominators and numerators are handled separately. When you set
ProductMode to SpecifyPrecision, you can change the DenProdFracLength
setting manually. Otherwise, for multiplication operations that use the

7-42

Fixed-Point Filter Properties

denominator coefficients, the filter sets the fraction length as defined by the
ProductMode setting.

DenStateFracLength
When you look at the flow diagram for the dfilt.df1sos filter object, the
states associated with denominator coefficient operations take the fraction
length from this property. In combination with the DenStateWordLength
property, these properties fully specify how the filter interprets the states.

As with all fraction length properties, the value you enter here can be any
negative or positive integer, or zero. Fraction length can be larger than the
associated word length, as well. By default, the value is 15 bits, with the
DenStateWordLength of 16 bits.

DenStateWordLength
When you look at the flow diagram for the dfilt.df1sos filter object, the
states associated with the denominator coefficient operations take the
data format from this property and the DenStateFracLength property. In
combination, these properties fully specify how the filter interprets the state
it uses.

By default, the value is 16 bits, with the DenStateFracLength of 15 bits.

FilterInternals
Similar to the FilterInternals pane in FDATool, this property controls
whether the filter sets the output word and fraction lengths automatically,
and the accumulator word and fraction lengths automatically as well, to
maintain the best precision results during filtering. The default value,
FullPrecision, sets automatic word and fraction length determination by
the filter. Setting FilterInternals to SpecifyPrecision exposes the output
and accumulator related properties so you can set your own word and fraction
lengths for them. Note that

FilterStructure
Every dfilt object has a FilterStructure property. This is a read-only
property containing a string that declares the structure of the filter object
you created.

7-43

7 Reference for the Properties of Filter Objects

When you construct filter objects, the FilterStructure property value is
returned containing one of the strings shown in the following table. Property
FilterStructure indicates the filter architecture and comes from the
constructor you use to create the filter.

After you create a filter object, you cannot change the FilterStructure
property value. To make filters that use different structures, you construct
new filters using the appropriate methods, or use convert to switch to a
new structure.

Default value. Since this depends on the constructor you use and the
constructor includes the filter structure definition, there is no default value.
When you try to create a filter without specifying a structure, MATLAB
returns an error.

Filter Constructor Name
FilterStructure Property String and Filter
Type

'dfilt.df1' Direct form I
'dfilt.df1sos' Direct form I filter implemented using

second-order sections
'dfilt.df1t' Direct form I transposed
'dfilt.df2' Direct form II
'dfilt.df2sos' Direct form II filter implemented using second

order sections
'dfilt.df2t' Direct form II transposed
'dfilt.dfasymfir' Antisymmetric finite impulse response (FIR).

Even and odd forms.
'dfilt.dffir' Direct form FIR
'dfilt.dffirt' Direct form FIR transposed
'dfilt.latticeallpass' Lattice allpass
'dfilt.latticear' Lattice autoregressive (AR)
'dfilt.latticemamin' Lattice moving average (MA) minimum phase
'dfilt.latticemamax' Lattice moving average (MA) maximum phase

7-44

Fixed-Point Filter Properties

Filter Constructor Name
FilterStructure Property String and Filter
Type

'dfilt.latticearma' Lattice ARMA
'dfilt.dfsymfir' Symmetric FIR. Even and odd forms
'dfilt.scalar' Scalar

Filter Structures with Quantizations Shown in Place. To help you
understand how and where the quantizations occur in filter structures in
this toolbox, the figure below shows the structure for a Direct Form II filter,
including the quantizations (fixed-point formats) that compose part of the
fixed-point filter. You see that one or more quantization processes, specified
by the *format label, accompany each filter element, such as a delay, product,
or summation element. The input to or output from each element reflects the
result of applying the associated quantization as defined by the word length
and fraction length format. Wherever a particular filter element appears in a
filter structure, recall the quantization process that accompanies the element
as it appears in this figure. Each filter reference page, such as the dfilt.df2
reference page, includes the signal flow diagram showing the formatting
elements that define the quantizations that occur throughout the filter flow.

For example, a product quantization, either numerator or denominator,
follows every product (gain) element and a sum quantization, also either
numerator or denominator, follows each sum element. The figure shows the
Arithmetic property value set to fixed.

df2 IIR Filter Structure Including the Formatting Objects, with Arithmetic
Property Value fixed

7-45

7 Reference for the Properties of Filter Objects

When your df2 filter uses the Arithmetic property set to fixed, the filter
structure contains the formatting features shown in the diagram. The formats
included in the structure are fixed-point objects that include properties to set
various word and fraction length formats. For example, the NumFormat or
DenFormat in the fixed-point arithmetic filter set the properties for quantizing
numerator or denominator coefficients according to word and fraction length
settings.

When the leading denominator coefficient a(1) in your filter is not 1, choose it
to be a power of two so that a shift replaces the multiply that would otherwise
be used.

Fixed-Point Arithmetic Filter Structures. You choose among several filter
structures when you create fixed-point filters. You can also specify filters with
single or multiple cascaded sections of the same type. Because quantization is
a nonlinear process, different fixed-point filter structures produce different
results.

To specify the filter structure, you select the appropriate dfilt.structure
method to construct your filter. Refer to the function reference information for
dfilt and set for details on setting property values for quantized filters.

7-46

Fixed-Point Filter Properties

The figures in the following subsections of this section serve as aids to help you
determine how to enter your filter coefficients for each filter structure. Each
subsection contains an example for constructing a filter of the given structure.

Scale factors for the input and output for the filters do not appear in the block
diagrams. The default filter structures do not include, nor assume, the scale
factors. For filter scaling information, refer to scale in the Help system.

About the Filter Structure Diagrams. In the diagrams that accompany the
following filter structure descriptions, you see the active operators that define
the filter, such as sums and gains, and the formatting features that control
the processing in the filter. Notice also that the coefficients are labeled in the
figure. This tells you the order in which the filter processes the coefficients.

While the meaning of the block elements is straightforward, the labels for the
formats that form part of the filter are less clear. Each figure includes text in
the form labelFormat that represents the existence of a formatting feature at
that point in the structure. The Format stands for formatting object and the
label specifies the data that the formatting object affects.

For example, in the dfilt.df2 filter shown above, the entries InputFormat
and OutputFormat are the formats applied, that is the word length and
fraction length, to the filter input and output data. For example, filter
properties like OutputWordLength and InputWordLength specify values that
control filter operations at the input and output points in the structure and
are represented by the formatting objects InputFormat and OutputFormat
shown in the filter structure diagrams.

Direct Form I Filter Structure. The following figure depicts the direct form I
filter structure that directly realizes a transfer function with a second-order
numerator and denominator. The numerator coefficients are numbered b(i),
i=1, 2, 3; the denominator coefficients are numbered a(i), i = 1, 2, 3; and the
states (used for initial and final state values in filtering) are labeled z(i). In
the figure, the Arithmetic property is set to fixed.

7-47

7 Reference for the Properties of Filter Objects

Example — Specifying a Direct Form I Filter. You can specify a
second-order direct form I structure for a quantized filter hq with the following
code.

b = [0.3 0.6 0.3];
a = [1 0 0.2];
hq = dfilt.df1(b,a);

To create the fixed-point filter, set the Arithmetic property to fixed as
shown here.

set(hq,'arithmetic','fixed');

Direct Form I Filter Structure With Second-Order Sections. The
following figure depicts a direct form I filter structure that directly realizes
a transfer function with a second-order numerator and denominator and
second-order sections. The numerator coefficients are numbered b(i), i=1, 2, 3;
the denominator coefficients are numbered a(i), i = 1, 2, 3; and the states (used
for initial and final state values in filtering) are labeled z(i). In the figure, the
Arithmetic property is set to fixed to place the filter in fixed-point mode.

7-48

Fixed-Point Filter Properties

Example — Specifying a Direct Form I Filter with Second-Order
Sections. You can specify an eighth-order direct form I structure for a
quantized filter hq with the following code.

b = [0.3 0.6 0.3];
a = [1 0 0.2];
hq = dfilt.df1sos(b,a);

To create the fixed-point filter, set the Arithmetic property to fixed, as
shown here.

set(hq,'arithmetic','fixed');

Direct Form I Transposed Filter Structure. The next signal flow diagram
depicts a direct form I transposed filter structure that directly realizes a
transfer function with a second-order numerator and denominator. The
numerator coefficients are b(i), i = 1, 2, 3; the denominator coefficients are a(i),
i = 1, 2, 3; and the states (used for initial and final state values in filtering)
are labeled z(i). With the Arithmetic property value set to fixed, the figure
shows the filter with the properties indicated.

7-49

7 Reference for the Properties of Filter Objects

Example — Specifying a Direct Form I Transposed Filter. You can
specify a second-order direct form I transposed filter structure for a quantized
filter hq with the following code.

b = [0.3 0.6 0.3];
a = [1 0 0.2];
hq = dfilt.df1t(b,a);
set(hq,'arithmetic','fixed');

Direct Form II Filter Structure. The following graphic depicts a direct form
II filter structure that directly realizes a transfer function with a second-order
numerator and denominator. In the figure, the Arithmetic property value is
fixed. Numerator coefficients are named b(i); denominator coefficients are
named a(i), i = 1, 2, 3; and the states (used for initial and final state values
in filtering) are named z(i).

7-50

Fixed-Point Filter Properties

Use the method dfilt.df2 to construct a quantized filter whose
FilterStructure property is Direct-Form II.

Example — Specifying a Direct Form II Filter. You can specify a
second-order direct form II filter structure for a quantized filter hq with the
following code.

b = [0.3 0.6 0.3];
a = [1 0 0.2];
hq = dfilt.df2(b,a);
hq.arithmetic = 'fixed'

To convert your initial double-precision filter hq to a quantized or fixed-point
filter, set the Arithmetic property to fixed, as shown.

Direct Form II Filter Structure With Second-Order Sections

The following figure depicts direct form II filter structure using second-order
sections that directly realizes a transfer function with a second-order
numerator and denominator sections. In the figure, the Arithmetic property
value is fixed. Numerator coefficients are labeled b(i); denominator
coefficients are labeled a(i), i = 1, 2, 3; and the states (used for initial and final
state values in filtering) are labeled z(i).

7-51

7 Reference for the Properties of Filter Objects

Use the method dfilt.df2sos to construct a quantized filter whose
FilterStructure property is Direct-Form II.

Example — Specifying a Direct Form II Filter with Second-Order
Sections. You can specify a tenth-order direct form II filter structure that
uses second-order sections for a quantized filter hq with the following code.

b = [0.3 0.6 0.3];
a = [1 0 0.2];
hq = dfilt.df2sos(b,a);
hq.arithmetic = 'fixed'

To convert your prototype double-precision filter hq to a fixed-point filter, set
the Arithmetic property to fixed, as shown.

Direct Form II Transposed Filter Structure. The following figure depicts
the direct form II transposed filter structure that directly realizes transfer
functions with a second-order numerator and denominator. The numerator
coefficients are labeled b(i), the denominator coefficients are labeled a(i), i =
1, 2, 3, and the states (used for initial and final state values in filtering) are
labeled z(i). In the first figure, the Arithmetic property value is fixed.

7-52

Fixed-Point Filter Properties

Use the constructor dfilt.df2t to specify the value of the FilterStructure
property for a filter with this structure that you can convert to fixed-point
filtering.

Example — Specifying a Direct Form II Transposed Filter. Specifying or
constructing a second-order direct form II transposed filter for a fixed-point
filter hq starts with the following code to define the coefficients and construct
the filter.

b = [0.3 0.6 0.3];
a = [1 0 0.2];
hd = dfilt.df2t(b,a);

Now create the fixed-point filtering version of the filter from hd, which is
floating point.

hq = set(hd,'arithmetic','fixed');

7-53

7 Reference for the Properties of Filter Objects

Direct Form Antisymmetric FIR Filter Structure (Any Order). The
following figure depicts a direct form antisymmetric FIR filter structure
that directly realizes a second-order antisymmetric FIR filter. The filter
coefficients are labeled b(i), and the initial and final state values in filtering
are labeled z(i). This structure reflects the Arithmetic property set to fixed.

Use the method dfilt.dfasymfir to construct the filter, and then set the
Arithmetic property to fixed to convert to a fixed-point filter with this
structure.

Example — Specifying an Odd-Order Direct Form Antisymmetric FIR
Filter. Specify a fifth-order direct form antisymmetric FIR filter structure for
a fixed-point filter hq with the following code.

b = [-0.008 0.06 -0.44 0.44 -0.06 0.008];

hq = dfilt.dfasymfir(b);

set(hq,'arithmetic','fixed')

hq

7-54

Fixed-Point Filter Properties

hq =

FilterStructure: 'Direct-Form Antisymmetric FIR'

Arithmetic: 'fixed'

Numerator: [-0.0080 0.0600 -0.4400 0.4400 -0.0600 0.0080]

PersistentMemory: false

States: [1x1 fi object]

CoeffWordLength: 16

CoeffAutoScale: true

Signed: true

InputWordLength: 16

InputFracLength: 15

OutputWordLength: 16

OutputMode: 'AvoidOverflow'

TapSumMode: 'KeepMSB'

TapSumWordLength: 17

ProductMode: 'FullPrecision'

AccumWordLength: 40

CastBeforeSum: true

RoundMode: 'convergent'

OverflowMode: 'wrap'

InheritSettings: false

Example — Specifying an Even-Order Direct Form Antisymmetric FIR
Filter. You can specify a fourth-order direct form antisymmetric FIR filter
structure for a fixed-point filter hq with the following code.

b = [-0.01 0.1 0.0 -0.1 0.01];
hq = dfilt.dfasymfir(b);
hq.arithmetic='fixed'

hq =

7-55

7 Reference for the Properties of Filter Objects

FilterStructure: 'Direct-Form Antisymmetric FIR'
Arithmetic: 'fixed'
Numerator: [-0.0100 0.1000 0 -0.1000 0.0100]

PersistentMemory: false
States: [1x1 fi object]

CoeffWordLength: 16
CoeffAutoScale: true

Signed: true

InputWordLength: 16
InputFracLength: 15

OutputWordLength: 16
OutputMode: 'AvoidOverflow'

TapSumMode: 'KeepMSB'
TapSumWordLength: 17

ProductMode: 'FullPrecision'

AccumWordLength: 40

CastBeforeSum: true
RoundMode: 'convergent'

OverflowMode: 'wrap'

InheritSettings: false

Direct Form Finite Impulse Response (FIR) Filter Structure. In the next
figure, you see the signal flow graph for a direct form finite impulse response
(FIR) filter structure that directly realizes a second-order FIR filter. The
filter coefficients are b(i), i = 1, 2, 3, and the states (used for initial and final
state values in filtering) are z(i). To generate the figure, set the Arithmetic
property to fixed after you create your prototype filter in double-precision
arithmetic.

7-56

Fixed-Point Filter Properties

Use the dfilt.dffir method to generate a filter that uses this structure.

Example — Specifying a Direct Form FIR Filter. You can specify a
second-order direct form FIR filter structure for a fixed-point filter hq with
the following code.

b = [0.05 0.9 0.05];
hd = dfilt.dffir(b);
hq = set(hd,'arithmetic','fixed');

Direct Form FIR Transposed Filter Structure. This figure uses the filter
coefficients labeled b(i), i = 1, 2, 3, and states (used for initial and final state
values in filtering) are labeled z(i). These depict a direct form finite impulse
response (FIR) transposed filter structure that directly realizes a second-order
FIR filter.

7-57

7 Reference for the Properties of Filter Objects

With the Arithmetic property set to fixed, your filter matches the figure.
Using the method dfilt.dffirt returns a double-precision filter that you
convert to a fixed-point filter.

7-58

Fixed-Point Filter Properties

Example — Specifying a Direct Form FIR Transposed Filter. You
can specify a second-order direct form FIR transposed filter structure for a
fixed-point filter hq with the following code.

b = [0.05 0.9 0.05];
hd=dfilt.dffirt(b);
hq = copy(hd);
hq.arithmetic = 'fixed';

Lattice Allpass Filter Structure. The following figure depicts the lattice
allpass filter structure. The pictured structure directly realizes third-order
lattice allpass filters using fixed-point arithmetic. The filter reflection
coefficients are labeled k1(i), i = 1, 2, 3. The states (used for initial and final
state values in filtering) are labeled z(i).

To create a quantized filter that uses the lattice allpass structure shown in
the figure, use the dfilt.latticeallpass method and set the Arithmetic
property to fixed.

Example — Specifying a Lattice Allpass Filter. You can create a
third-order lattice allpass filter structure for a quantized filter hq with the
following code.

k = [.66 .7 .44];
hd=dfilt.latticeallpass(k);
set(hq,'arithmetic','fixed');

7-59

7 Reference for the Properties of Filter Objects

Lattice Moving Average Maximum Phase Filter Structure. In the next
figure you see a lattice moving average maximum phase filter structure. This
signal flow diagram directly realizes a third-order lattice moving average (MA)
filter with the following phase form depending on the initial transfer function:

• When you start with a minimum phase transfer function, the upper branch
of the resulting lattice structure returns a minimum phase filter. The lower
branch returns a maximum phase filter.

• When your transfer function is neither minimum phase nor maximum
phase, the lattice moving average maximum phase structure will not be
maximum phase.

• When you start with a maximum phase filter, the resulting lattice filter is
maximum phase also.

The filter reflection coefficients are labeled k(i), i = 1, 2, 3. The states (used for
initial and final state values in filtering) are labeled z(i). In the figure, we set
the Arithmetic property to fixed to reveal the fixed-point arithmetic format
features that control such options as word length and fraction length.

Example — Constructing a Lattice Moving Average Maximum Phase
Filter. Constructing a fourth-order lattice MA maximum phase filter structure
for a quantized filter hq begins with the following code.

k = [.66 .7 .44 .33];
hd=dfilt.latticemamax(k);

7-60

Fixed-Point Filter Properties

Lattice Autoregressive (AR) Filter Structure. The method
dfilt.latticear directly realizes lattice autoregressive filters in the toolbox.
The following figure depicts the third-order lattice autoregressive (AR) filter
structure — with the Arithmetic property equal to fixed. The filter reflection
coefficients are labeled k(i), i = 1, 2, 3, and the states (used for initial and final
state values in filtering) are labeled z(i).

Example — Specifying a Lattice AR Filter. You can specify a third-order
lattice AR filter structure for a quantized filter hq with the following code.

k = [.66 .7 .44];
hd=dfilt.latticear(k);
hq.arithmetic = 'custom';

Lattice Moving Average (MA) Filter Structure for Minimum Phase.
The following figures depict lattice moving average (MA) filter structures
that directly realize third-order lattice MA filters for minimum phase. The
filter reflection coefficients are labeled k(i), i = 1, 2, 3, and the states (used
for initial and final state values in filtering) are labeled z(i). Setting the
Arithmetic property of the filter to fixed results in a fixed-point filter that
matches the figure.

This signal flow diagram directly realizes a third-order lattice moving average
(MA) filter with the following phase form depending on the initial transfer
function:

7-61

7 Reference for the Properties of Filter Objects

• When you start with a minimum phase transfer function, the upper branch
of the resulting lattice structure returns a minimum phase filter. The lower
branch returns a minimum phase filter.

• When your transfer function is neither minimum phase nor maximum
phase, the lattice moving average minimum phase structure will not be
minimum phase.

• When you start with a minimum phase filter, the resulting lattice filter is
minimum phase also.

The filter reflection coefficients are labeled k(i), i = 1, 2, 3. The states (used for
initial and final state values in filtering) are labeled z(i). This figure shows
the filter structure when theArithmetic property is set to fixed to reveal
the fixed-point arithmetic format features that control such options as word
length and fraction length.

Example — Specifying a Minimum Phase Lattice MA Filter. You
can specify a third-order lattice MA filter structure for minimum phase
applications using variations of the following code.

k = [.66 .7 .44];
hd=dfilt.latticemamin(k);
set(hq,'arithmetic','fixed');

7-62

Fixed-Point Filter Properties

Lattice Autoregressive Moving Average (ARMA) Filter Structure. The
figure below depicts a lattice autoregressive moving average (ARMA) filter
structure that directly realizes a fourth-order lattice ARMA filter. The filter
reflection coefficients are labeled k(i), i = 1, ..., 4; the ladder coefficients are
labeled v(i), i = 1, 2, 3; and the states (used for initial and final state values
in filtering) are labeled z(i).

Example — Specifying an Lattice ARMA Filter. The following code
specifies a fourth-order lattice ARMA filter structure for a quantized filter hq,
starting from hd, a floating-point version of the filter.

k = [.66 .7 .44 .66];
v = [1 0 0];
hd=dfilt.latticearma(k,v);
hq.arithmetic = 'fixed';

7-63

7 Reference for the Properties of Filter Objects

Direct Form Symmetric FIR Filter Structure (Any Order). Shown in the
next figure, you see signal flow that depicts a direct form symmetric FIR filter
structure that directly realizes a fifth-order direct form symmetric FIR filter.
Filter coefficients are labeled b(i), i = 1, ..., n, and states (used for initial and
final state values in filtering) are labeled z(i). Showing the filter structure
used when you select fixed for the Arithmetic property value, the first figure
details the properties in the filter object.

Example — Specifying an Odd-Order Direct Form Symmetric FIR
Filter. By using the following code in MATLAB, you can specify a fifth-order
direct form symmetric FIR filter for a fixed-point filter hq:

b = [-0.008 0.06 0.44 0.44 0.06 -0.008];
hd=dfilt.dfsymfir(b);
set(hq,'arithmetic','fixed');

Assigning Filter Coefficients. The syntax you use to assign filter coefficients
for your floating-point or fixed-point filter depends on the structure you select
for your filter.

7-64

Fixed-Point Filter Properties

Converting Filters Between Representations. Filter conversion functions
in this toolbox and in Signal Processing Toolbox software let you convert filter
transfer functions to other filter forms, and from other filter forms to transfer
function form. Relevant conversion functions include the following functions.

Conversion
Function Description

ca2tf Converts from a coupled allpass filter to a transfer
function.

cl2tf Converts from a lattice coupled allpass filter to a
transfer function.

convert Convert a discrete-time filter from one filter
structure to another.

sos Converts quantized filters to create second-order
sections. We recommend this method for converting
quantized filters to second-order sections.

tf2ca Converts from a transfer function to a coupled
allpass filter.

tf2cl Converts from a transfer function to a lattice coupled
allpass filter.

tf2latc Converts from a transfer function to a lattice filter.
tf2sos Converts from a transfer function to a second-order

section form.
tf2ss Converts from a transfer function to state-space

form.
tf2zp Converts from a rational transfer function to its

factored (single section) form (zero-pole-gain form).
zp2sos Converts a zero-pole-gain form to a second-order

section form.
zp2ss Conversion of zero-pole-gain form to a state-space

form.
zp2tf Conversion of zero-pole-gain form to transfer

functions of multiple order sections.

7-65

7 Reference for the Properties of Filter Objects

Note that these conversion routines do not apply to dfilt objects.

The function convert is a special case — when you use convert to change
the filter structure of a fixed-point filter, you lose all of the filter states and
settings. Your new filter has default values for all properties, and it in not
fixed-point.

To demonstrate the changes that occur, convert a fixed-point direct form I
transposed filter to direct form II structure.

hd=dfilt.df1t

hd =

FilterStructure: 'Direct-Form I Transposed'
Arithmetic: 'double'
Numerator: 1

Denominator: 1
PersistentMemory: false

States: Numerator: [0x0 double]
Denominator:[0x0 double]

hd.arithmetic='fixed'
hd =

FilterStructure: 'Direct-Form I Transposed'
Arithmetic: 'fixed'
Numerator: 1

Denominator: 1
PersistentMemory: false

States: Numerator: [0x0 fi]
Denominator:[0x0 fi]

convert(hd,'df2')

Warning: Using reference filter for structure conversion.
Fixed-point attributes will not be converted.

ans =

7-66

Fixed-Point Filter Properties

FilterStructure: 'Direct-Form II'
Arithmetic: 'double'
Numerator: 1

Denominator: 1
PersistentMemory: false

States: [0x1 double]

You can specify a filter with L sections of arbitrary order by

1 Factoring your entire transfer function with tf2zp. This converts your
transfer function to zero-pole-gain form.

2 Using zp2tf to compose the transfer function for each section from the
selected first-order factors obtained in step 1.

Note You are not required to normalize the leading coefficients of each
section’s denominator polynomial when you specify second-order sections,
though tf2sos does.

Gain
dfilt.scalar filters have a gain value stored in the gain property. By
default the gain value is one — the filter acts as a wire.

InputFracLength
InputFracLength defines the fraction length assigned to the input data for
your filter. Used in tandem with InputWordLength, the pair defines the data
format for input data you provide for filtering.

As with all fraction length properties in dfilt objects, the value you enter
here can be any negative or positive integer, or zero. Fraction length can be
larger than the associated word length, in this case InputWordLength, as well.

InputWordLength
Specifies the number of bits your filter uses to represent your input data. Your
word length option is limited by the arithmetic you choose — up to 32 bits for

7-67

7 Reference for the Properties of Filter Objects

double, float, and fixed. Setting Arithmetic to single (single-precision
floating-point) limits word length to 16 bits. The default value is 16 bits.

Ladder
Included as a property in dfilt.latticearma filter objects, Ladder contains
the denominator coefficients that form an IIR lattice filter object. For
instance, the following code creates a high pass filter object that uses the
lattice ARMA structure.

[b,a]=cheby1(5,.5,.5,'high')

b =

0.0282 -0.1409 0.2817 -0.2817 0.1409 -0.0282

a =

1.0000 0.9437 1.4400 0.9629 0.5301 0.1620

hd=dfilt.latticearma(b,a)

hd =

FilterStructure: [1x44 char]
Arithmetic: 'double'

Lattice: [1x6 double]
Ladder: [1 0.9437 1.4400 0.9629 0.5301 0.1620]

PersistentMemory: false
States: [6x1 double]

hd.arithmetic='fixed'

hd =

FilterStructure: [1x44 char]
Arithmetic: 'fixed'

Lattice: [1x6 double]
Ladder: [1 0.9437 1.4400 0.9629 0.5301 0.1620]

7-68

Fixed-Point Filter Properties

PersistentMemory: false
States: [1x1 embedded.fi]

CoeffWordLength: 16
CoeffAutoScale: true

Signed: true

InputWordLength: 16
InputFracLength: 15

OutputWordLength: 16
OutputMode: 'AvoidOverflow'

StateWordLength: 16
StateFracLength: 15

ProductMode: 'FullPrecision'

AccumWordLength: 40
CastBeforeSum: true

RoundMode: 'convergent'
OverflowMode: 'wrap'

LadderAccumFracLength
Autoregressive, moving average lattice filter objects (lattticearma) use
ladder coefficients to define the filter. In combination with LadderFracLength
and CoeffWordLength, these three properties specify or reflect how the
accumulator outputs data stored there. As with all fraction length properties,
LadderAccumFracLength can be any integer, including integers larger than
AccumWordLength, and positive or negative integers. The default value is
29 bits.

LadderFracLength
To let you control the way your latticearma filter interprets the denominator
coefficients, LadderFracLength sets the fraction length applied to the ladder
coefficients for your filter. The default value is 14 bits.

7-69

7 Reference for the Properties of Filter Objects

As with all fraction length properties, LadderFracLength can be any integer,
including integers larger than AccumWordLength, and positive or negative
integers.

Lattice
When you create a lattice-based IIR filter, your numerator coefficients (from
your IIR prototype filter or the default dfilt lattice filter function) get stored
in the Lattice property of the dfilt object. The properties CoeffWordLength
and LatticeFracLength define the data format the object uses to represent
the lattice coefficients. By default, lattice coefficients are in double-precision
format.

LatticeAccumFracLength
Lattice filter objects (latticeallpass, latticearma, latticemamax, and
latticemamin) use lattice coefficients to define the filter. In combination with
LatticeFracLength and CoeffWordLength, these three properties specify
how the accumulator outputs lattice coefficient-related data stored there. As
with all fraction length properties, LatticeAccumFracLength can be any
integer, including integers larger than AccumWordLength, and positive or
negative integers. By default, the property is set to 31 bits.

LatticeFracLength
To let you control the way your filter interprets the denominator coefficients,
LatticeFracLength sets the fraction length applied to the lattice
coefficients for your lattice filter. When you create the default lattice filter,
LatticeFracLength is 16 bits.

As with all fraction length properties, LatticeFracLength can be any integer,
including integers larger than CoeffWordLength, and positive or negative
integers.

MultiplicandFracLength
Each input data element for a multiply operation has both word length
and fraction length to define its representation. MultiplicandFracLength
sets the fraction length to use when the filter object performs any multiply
operation during filtering. For default filters, this is set to 15 bits.

7-70

Fixed-Point Filter Properties

As with all word and fraction length properties, MultiplicandFracLength
can be any integer, including integers larger than CoeffWordLength, and
positive or negative integers.

MultiplicandWordLength
Each input data element for a multiply operation has both word length and
fraction length to define its representation. MultiplicandWordLength sets
the word length to use when the filter performs any multiply operation during
filtering. For default filters, this is set to 16 bits. Only the df1t and df1tsos
filter objects include the MultiplicandFracLength property.

Only the df1t and df1tsos filter objects include the MultiplicandWordLength
property.

NumAccumFracLength
Filter structures df1, df1t, df2, and df2t that use fixed arithmetic have this
property that defines the fraction length applied to numerator coefficients in
output from the accumulator. In combination with AccumWordLength, the
NumAccumFracLength property fully specifies how the accumulator outputs
numerator-related data stored there.

As with all fraction length properties, NumAccumFracLength can be any
integer, including integers larger than AccumWordLength, and positive or
negative integers. 30 bits is the default value when you create the filter
object. To be able to change the value for this property, set FilterInternals
for the filter to SpecifyPrecision.

Numerator
The numerator coefficients for your filter, taken from the prototype you start
with or from the default filter, are stored in this property. Generally this is a
1-by-N array of data in double format, where N is the length of the filter.

All of the filter objects include Numerator, except the lattice-based and
second-order section filters, such as dfilt.latticema and dfilt.df1tsos.

7-71

7 Reference for the Properties of Filter Objects

NumFracLength
Property NumFracLength contains the value that specifies the fraction
length for the numerator coefficients for your filter. NumFracLength
specifies the fraction length used to interpret the numerator coefficients.
Used in combination with CoeffWordLength, these two properties define
the interpretation of the coefficients stored in the vector that contains the
numerator coefficients.

As with all fraction length properties, the value you enter here can be any
negative or positive integer, or zero. Fraction length can be larger than the
associated word length, as well. By default, the value is 15 bits, with the
CoeffWordLength of 16 bits.

NumProdFracLength
A property of all of the direct form IIR dfilt objects, except the ones that
implement second-order sections, NumProdFracLength specifies the fraction
length applied to data output from product operations the filter performs on
numerator coefficients.

Looking at the signal flow diagram for the dfilt.df1t filter, for example, you
see that denominators and numerators are handled separately. When you set
ProductMode to SpecifyPrecision, you can change the NumProdFracLength
setting manually. Otherwise, for multiplication operations that use the
numerator coefficients, the filter sets the word length as defined by the
ProductMode setting.

NumStateFracLength
All the variants of the direct form I structure include the property
NumStateFracLength to store the fraction length applied to the numerator
states for your filter object. By default, this property has the value 15 bits,
with the CoeffWordLength of 16 bits, which you can change after you create
the filter object.

As with all fraction length properties, the value you enter here can be any
negative or positive integer, or zero. Fraction length can be larger than the
associated word length, as well.

7-72

Fixed-Point Filter Properties

NumStateWordLength
When you look at the flow diagram for the df1sos filter object, the states
associated with the numerator coefficient operations take the data format
from this property and the NumStateFracLength property. In combination,
these properties fully specify how the filter interprets the state it uses.

As with all fraction length properties, the value you enter here can be any
negative or positive integer, or zero. Fraction length can be larger than the
associated word length, as well. By default, the value is 16 bits, with the
NumStateFracLength of 11 bits.

OutputFracLength
To define the output from your filter object, you need both the word and
fraction lengths. OutputFracLength determines the fraction length applied
to interpret the output data. Combining this with OutputWordLength fully
specifies the format of the output.

Your fraction length can be any negative or positive integer, or zero. In
addition, the fraction length you specify can be larger than the associated
word length. Generally, the default value is 11 bits.

OutputMode
Sets the mode the filter uses to scale the filtered (output) data. You have
the following choices:

• AvoidOverflow — directs the filter to set the property that controls the
output data fraction length to avoid causing the data to overflow. In a df2
filter, this would be the OutputFracLength property.

• BestPrecision — directs the filter to set the property that controls the
output data fraction length to maximize the precision in the output data.
For df1t filters, this is the OutputFracLength property. When you change
the word length (OutputWordLength), the filter adjusts the fraction length
to maintain the best precision for the new word size.

• SpecifyPrecision— lets you set the fraction length used by the filtered
data. When you select this choice, you can set the output fraction length
using the OutputFracLength property to define the output precision.

7-73

7 Reference for the Properties of Filter Objects

All filters include this property except the direct form I filter which takes the
output format from the filter states.

Here is an example that changes the mode setting to bestprecision, and
then adjusts the word length for the output.

hd=dfilt.df2

hd =

FilterStructure: 'Direct-Form II'
Arithmetic: 'double'
Numerator: 1

Denominator: 1
PersistentMemory: false

States: [0x1 double]

hd.arithmetic='fixed'

hd =

FilterStructure: 'Direct-Form II'
Arithmetic: 'fixed'
Numerator: 1

Denominator: 1
PersistentMemory: false

States: [1x1 embedded.fi]

CoeffWordLength: 16
CoeffAutoScale: true

Signed: true

InputWordLength: 16
InputFracLength: 15

OutputWordLength: 16
OutputMode: 'AvoidOverflow'

StateWordLength: 16
StateFracLength: 15

7-74

Fixed-Point Filter Properties

ProductMode: 'FullPrecision'

AccumWordLength: 40
CastBeforeSum: true

RoundMode: 'convergent'
OverflowMode: 'wrap'

get(hd)
PersistentMemory: false

FilterStructure: 'Direct-Form II'
States: [1x1 embedded.fi]

Numerator: 1
Denominator: 1
Arithmetic: 'fixed'

CoeffWordLength: 16
CoeffAutoScale: 1

Signed: 1
RoundMode: 'convergent'

OverflowMode: 'wrap'
InputWordLength: 16
InputFracLength: 15

OutputWordLength: 16
OutputMode: 'AvoidOverflow'

ProductMode: 'FullPrecision'
StateWordLength: 16
StateFracLength: 15

NumFracLength: 14
DenFracLength: 14

OutputFracLength: 13
ProductWordLength: 32
NumProdFracLength: 29
DenProdFracLength: 29

AccumWordLength: 40
NumAccumFracLength: 29
DenAccumFracLength: 29

CastBeforeSum: 1

hd.outputMode='bestprecision'

7-75

7 Reference for the Properties of Filter Objects

hd =

FilterStructure: 'Direct-Form II'
Arithmetic: 'fixed'
Numerator: 1

Denominator: 1
PersistentMemory: false

States: [1x1 embedded.fi]

CoeffWordLength: 16
CoeffAutoScale: true

Signed: true

InputWordLength: 16
InputFracLength: 15

OutputWordLength: 16
OutputMode: 'BestPrecision'

StateWordLength: 16
StateFracLength: 15

ProductMode: 'FullPrecision'

AccumWordLength: 40
CastBeforeSum: true

RoundMode: 'convergent'
OverflowMode: 'wrap'

hd.outputWordLength=8;

get(hd)
PersistentMemory: false
FilterStructure: 'Direct-Form II'

States: [1x1 embedded.fi]
Numerator: 1

Denominator: 1
Arithmetic: 'fixed'

7-76

Fixed-Point Filter Properties

CoeffWordLength: 16
CoeffAutoScale: 1

Signed: 1
RoundMode: 'convergent'

OverflowMode: 'wrap'
InputWordLength: 16
InputFracLength: 15

OutputWordLength: 8
OutputMode: 'BestPrecision'

ProductMode: 'FullPrecision'
StateWordLength: 16
StateFracLength: 15

NumFracLength: 14
DenFracLength: 14

OutputFracLength: 5
ProductWordLength: 32
NumProdFracLength: 29
DenProdFracLength: 29

AccumWordLength: 40
NumAccumFracLength: 29
DenAccumFracLength: 29

CastBeforeSum: 1

Changing the OutputWordLength to 8 bits caused the filter to change the
OutputFracLength to 5 bits to keep the best precision for the output data.

OutputWordLength
Use the property OutputWordLength to set the word length used by the output
from your filter. Set this property to a value that matches your intended
hardware. For example, some digital signal processors use 32-bit output so
you would set OutputWordLength to 32.

[b,a] = butter(6,.5);
hd=dfilt.df1t(b,a);

set(hd,'arithmetic','fixed')

hd

hd =

7-77

7 Reference for the Properties of Filter Objects

FilterStructure: 'Direct-Form I Transposed'
Arithmetic: 'fixed'
Numerator: [1x7 double]

Denominator: [1 0 0.7777 0 0.1142 0 0.0018]
PersistentMemory: false

States: Numerator: [6x1 fi]
Denominator:[6x1 fi]

CoeffWordLength: 16
CoeffAutoScale: true

Signed: true

InputWordLength: 16
InputFracLength: 15

OutputWordLength: 16
OutputMode: 'AvoidOverflow'

MultiplicandWordLength: 16
MultiplicandFracLength: 15

StateWordLength: 16
StateAutoScale: true

ProductMode: 'FullPrecision'

AccumWordLength: 40
CastBeforeSum: true

RoundMode: 'convergent'
OverflowMode: 'wrap'

hd.outputwordLength=32

hd =

FilterStructure: 'Direct-Form I Transposed'
Arithmetic: 'fixed'

7-78

Fixed-Point Filter Properties

Numerator: [1x7 double]
Denominator: [1 0 0.7777 0 0.1142 0 0.0018]

PersistentMemory: false
States: Numerator: [6x1 fi]

Denominator:[6x1 fi]

CoeffWordLength: 16
CoeffAutoScale: true

Signed: true

InputWordLength: 16
InputFracLength: 15

OutputWordLength: 32
OutputMode: 'AvoidOverflow'

MultiplicandWordLength: 16
MultiplicandFracLength: 15

StateWordLength: 16
StateAutoScale: true

ProductMode: 'FullPrecision'

AccumWordLength: 40
CastBeforeSum: true

RoundMode: 'convergent'
OverflowMode: 'wrap'

When you create a filter object, this property starts with the value 16.

OverflowMode
The OverflowMode property is specified as one of the following two strings
indicating how to respond to overflows in fixed-point arithmetic:

• 'saturate' — saturate overflows.

7-79

7 Reference for the Properties of Filter Objects

When the values of data to be quantized lie outside of the range of the
largest and smallest representable numbers (as specified by the applicable
word length and fraction length properties), these values are quantized to
the value of either the largest or smallest representable value, depending
on which is closest. saturate is the default value for OverflowMode.

• 'wrap'— wrap all overflows to the range of representable values.

When the values of data to be quantized lie outside of the range of the
largest and smallest representable numbers (as specified by the data format
properties), these values are wrapped back into that range using modular
arithmetic relative to the smallest representable number. You can learn
more about modular arithmetic in Fixed-Point Toolbox documentation.

These rules apply to the OverflowMode property.

• Applies to the accumulator and output data only.

• Does not apply to coefficients or input data. These always saturate the
results.

• Does not apply to products. Products maintain full precision at all times.
Your filters do not lose precision in the products.

Note Numbers in floating-point filters that extend beyond the dynamic range
overflow to ±inf.

ProductFracLength
After you set ProductMode for a fixed-point filter to SpecifyPrecision, this
property becomes available for you to change. ProductFracLength sets the
fraction length the filter uses for the results of multiplication operations.
Only the FIR filters such as asymmetric FIRs or lattice autoregressive filters
include this dynamic property.

Your fraction length can be any negative or positive integer, or zero. In
addition, the fraction length you specify can be larger than the associated
word length. Generally, the default value is 11 bits.

7-80

Fixed-Point Filter Properties

ProductMode
This property, available when your filter is in fixed-point arithmetic mode,
specifies how the filter outputs the results of multiplication operations. All
dfilt objects include this property when they use fixed-point arithmetic.

When available, you select from one of the following values for ProductMode:

• FullPrecision— means the filter automatically chooses the word length
and fraction length it uses to represent the results of multiplication
operations. The setting allow the product to retain the precision provided
by the inputs (multiplicands) to the operation.

• KeepMSB — means you specify the word length for representing product
operation results. The filter sets the fraction length to discard the LSBs,
keep the higher order bits in the data, and maintain the precision.

• KeepLSB— means you specify the word length for representing the product
operation results. The filter sets the fraction length to discard the MSBs,
keep the lower order bits, and maintain the precision. Compare to the
KeepMSB option.

• SpecifyPrecision— means you specify the word length and the fraction
length to apply to data output from product operations.

When you switch to fixed-point filtering from floating-point, you are most
likely going to throw away some data bits after product operations in your
filter, perhaps because you have limited resources. When you have to discard
some bits, you might choose to discard the least significant bits (LSB) from
a result since the resulting quantization error would be small as the LSBs
carry less weight. Or you might choose to keep the LSBs because the results
have MSBs that are mostly zero, such as when your values are small relative
to the range of the format in which they are represented. So the options for
ProductMode let you choose how to maintain the information you need from
the accumulator.

For more information about data formats, word length, and fraction length in
fixed-point arithmetic, refer to “Notes About Fraction Length, Word Length,
and Precision” on page 7-30.

7-81

7 Reference for the Properties of Filter Objects

ProductWordLength
You use ProductWordLength to define the data word length used by the
output from multiplication operations. Set this property to a value that
matches your intended application. For example, the default value is 32 bits,
but you can set any word length.

set(hq,'arithmetic','fixed');
set(hq,'ProductWordLength',64);

Note that ProductWordLength applies only to filters whose Arithmetic
property value is fixed.

PersistentMemory
Determine whether the filter states get restored to their starting values for
each filtering operation. The starting values are the values in place when you
create the filter object. PersistentMemory returns to zero any state that
the filter changes during processing. States that the filter does not change
are not affected. Defaults to false — the filter does not retain memory
about filtering operations from one to the next. Maintaining memory (setting
PersistentMemory to true) lets you filter large data sets as collections of
smaller subsets and get the same result.

In this example, filter hd first filters data xtot in one pass. Then you can
use hd to filter x as two separate data sets. The results ytot and ysec are
the same in both cases.

xtot=[x,x];

ytot=filter(hd,xtot)

ytot =

0 -0.0003 0.0005 -0.0014 0.0028 -0.0054 0.0092

reset(hm1); % Clear history of the filter

hm1.PersistentMemory='true';

ysec=[filter(hd,x) filter(hd,x)]

ysec =

0 -0.0003 0.0005 -0.0014 0.0028 -0.0054 0.0092

7-82

Fixed-Point Filter Properties

This test verifies that ysec (the signal filtered by sections) is equal to ytot
(the entire signal filtered at once).

RoundMode
The RoundMode property value specifies the rounding method used for
quantizing numerical values. Specify the RoundMode property values as one
of the following five strings.

RoundMode String Description of Rounding Algorithm

Ceiling Round toward positive infinity.
Floor Round toward negative infinity.
Nearest Round toward nearest. Ties round toward

positive infinity.
Nearest(Convergent) Round to the closest representable integer.

Ties round to the nearest even stored
integer. This is the least biased of the
methods available in this software.

Round Round toward nearest. Ties round toward
negative infinity for negative numbers,
and toward positive infinity for positive
numbers.

Zero Round toward zero.

The choice you make affects only the accumulator and output arithmetic.
Coefficient and input arithmetic always round. Finally, products never
overflow — they maintain full precision.

ScaleValueFracLength
Filter structures df1sos, df1tsos, df2sos, and df2tsos that use fixed
arithmetic have this property that defines the fraction length applied to
the scale values the filter uses between sections. In combination with
CoeffWordLength, these two properties fully specify how the filter interprets
and uses the scale values stored in the property ScaleValues. As with
fraction length properties, ScaleValueFracLength can be any integer,

7-83

7 Reference for the Properties of Filter Objects

including integers larger than CoeffWordLength, and positive or negative
integers. 15 bits is the default value when you create the filter.

ScaleValues
The ScaleValues property values are specified as a scalar (or vector) that
introduces scaling for inputs (and the outputs from cascaded sections in the
vector case) during filtering:

• When you only have a single section in your filter:

- Specify the ScaleValues property value as a scalar if you only want to
scale the input to your filter.

- Specify the ScaleValues property as a vector of length 2 if you want to
specify scaling to the input (scaled with the first entry in the vector) and
the output (scaled with the last entry in the vector).

• When you have L cascaded sections in your filter:

- Specify the ScaleValues property value as a scalar if you only want to
scale the input to your filter.

- Specify the value for the ScaleValues property as a vector of length
L+1 if you want to scale the inputs to every section in your filter, along
with the output:

The first entry of your vector specifies the input scaling

Each successive entry specifies the scaling at the output of the next
section

The final entry specifies the scaling for the filter output.

The default value for ScaleValues is 0.

The interpretation of this property is described as follows with diagrams in
“Interpreting the ScaleValues Property” on page 7-85.

Note The value of the ScaleValues property is not quantized. Data affected
by the presence of a scaling factor in the filter is quantized according to the
appropriate data format.

7-84

Fixed-Point Filter Properties

When you apply normalize to a fixed-point filter, the value for the
ScaleValues property is changed accordingly.

It is good practice to choose values for this property that are either positive or
negative powers of two.

Interpreting the ScaleValues Property. When you specify the values of
the ScaleValues property of a quantized filter, the values are entered as a
vector, the length of which is determined by the number of cascaded sections
in your filter:

• When you have only one section, the value of the Scalevalues property can
be a scalar or a two-element vector.

• When you have L cascaded sections in your filter, the value of the
ScaleValues property can be a scalar or an L+1-element vector.

The following diagram shows how the ScaleValues property values are
applied to a quantized filter with only one section.

The following diagram shows how the ScaleValues property values are
applied to a quantized filter with two sections.

7-85

7 Reference for the Properties of Filter Objects

Signed
When you create a dfilt object for fixed-point filtering (you set the property
Arithmetic to fixed, the property Signed specifies whether the filter
interprets coefficients as signed or unsigned. This setting applies only to the
coefficients. While the default setting is true, meaning that all coefficients
are assumed to be signed, you can change the setting to false after you
create the fixed-point filter.

For example, create a fixed-point direct-form II transposed filter with both
negative and positive coefficients, and then change the property value for
Signed from true to false to see what happens to the negative coefficient
values.

hd=dfilt.df2t(-5:5)

hd =

FilterStructure: 'Direct-Form II Transposed'
Arithmetic: 'double'
Numerator: [-5 -4 -3 -2 -1 0 1 2 3 4 5]

Denominator: 1
PersistentMemory: false

States: [10x1 double]

set(hd,'arithmetic','fixed')
hd.numerator

ans =

-5 -4 -3 -2 -1 0

7-86

Fixed-Point Filter Properties

1 2 3 4 5

set(hd,'signed',false)
hd.numerator

ans =

0 0 0 0 0 0
1 2 3 4 5

Using unsigned coefficients limits you to using only positive coefficients in
your filter. Signed is a dynamic property — you cannot set or change it until
you switch the setting for the Arithmetic property to fixed.

SosMatrix
When you convert a dfilt object to second-order section form, or create a
second-order section filter, sosMatrix holds the filter coefficients as property
values. Using the double data type by default, the matrix is in [sections
coefficients per section] form, displayed as [15-x-6] for filters with 6
coefficients per section and 15 sections, [15 6].

To demonstrate, the following code creates an order 30 filter using
second-order sections in the direct-form II transposed configuration. Notice
the sosMatrix property contains the coefficients for all the sections.

d = fdesign.lowpass('n,fc',30,0.5);
hd = butter(d);

hd =

FilterStructure: 'Direct-Form II, Second-Order Sections'
Arithmetic: 'double'
sosMatrix: [15x6 double]

ScaleValues: [16x1 double]
PersistentMemory: false

States: [2x15 double]

hd.arithmetic='fixed'

hd =

7-87

7 Reference for the Properties of Filter Objects

FilterStructure: 'Direct-Form II, Second-Order Sections'
Arithmetic: 'fixed'
sosMatrix: [15x6 double]

ScaleValues: [16x1 double]
PersistentMemory: false

States: [1x1 embedded.fi]

CoeffWordLength: 16
CoeffAutoScale: true

Signed: true

InputWordLength: 16
InputFracLength: 15

SectionInputWordLength: 16
SectionInputAutoScale: true

SectionOutputWordLength: 16
SectionOutputAutoScale: true

OutputWordLength: 16
OutputMode: 'AvoidOverflow'

StateWordLength: 16
StateFracLength: 15

ProductMode: 'FullPrecision'

AccumWordLength: 40
CastBeforeSum: true

RoundMode: 'convergent'
OverflowMode: 'wrap'

hd.sosMatrix

ans =

1.0000 2.0000 1.0000 1.0000 0 0.9005

7-88

Fixed-Point Filter Properties

1.0000 2.0000 1.0000 1.0000 0 0.7294
1.0000 2.0000 1.0000 1.0000 0 0.5888
1.0000 2.0000 1.0000 1.0000 0 0.4724
1.0000 2.0000 1.0000 1.0000 0 0.3755
1.0000 2.0000 1.0000 1.0000 0 0.2948
1.0000 2.0000 1.0000 1.0000 0 0.2275
1.0000 2.0000 1.0000 1.0000 0 0.1716
1.0000 2.0000 1.0000 1.0000 0 0.1254
1.0000 2.0000 1.0000 1.0000 0 0.0878
1.0000 2.0000 1.0000 1.0000 0 0.0576
1.0000 2.0000 1.0000 1.0000 0 0.0344
1.0000 2.0000 1.0000 1.0000 0 0.0173
1.0000 2.0000 1.0000 1.0000 0 0.0062
1.0000 2.0000 1.0000 1.0000 0 0.0007

The SOS matrix is an M-by-6 matrix, where M is the number of sections in
the second-order section filter. Filter hd has M equal to 15 as shown above (15
rows). Each row of the SOS matrix contains the numerator and denominator
coefficients (b’s and a’s) and the scale factors of the corresponding section
in the filter.

SectionInputAutoScale
Second-order section filters include this property that determines who the
filter handles data in the transitions from one section to the next in the filter.

How the filter represents the data passing from one section to the
next depends on the property value of SectionInputAutoScale. The
representation the filter uses between the filter sections depends on whether
the value of SectionInputAutoScale is true or false.

• SectionInputAutoScale = true means the filter chooses the fraction
length to maintain the value of the data between sections as close to the
output values from the previous section as possible. true is the default
setting.

• SectionInputAutoScale = false removes the automatic scaling of the
fraction length for the intersection data and exposes the property that
controls the coefficient fraction length (SectionInputFracLength) so
you can change it. For example, if the filter is a second-order, direct
form FIR filter, setting SectionInputAutoScale to false exposes the

7-89

7 Reference for the Properties of Filter Objects

SectionInputFracLength property that specifies the fraction length
applied to data between the sections.

SectionInputFracLength
Second-order section filters use quantizers at the input to each section
of the filter. The quantizers apply to the input data entering each filter
section. Note that the quantizers for each section are the same. To set the
fraction length for interpreting the input values, use the property value in
SectionInputFracLength.

In combination with CoeffWordLength, SectionInputFracLength fully
determines how the filter interprets and uses the state values stored in
the property States. As with all word and fraction length properties,
SectionInputFracLength can be any integer, including integers larger than
CoeffWordLength, and positive or negative integers. 15 bits is the default
value when you create the filter object.

SectionInputWordLength
SOS filters are composed of sections, each one a second-order filter. Filtering
data input to the filter involves passing the data through each filter section.
SectionInputWordLength specifies the word length applied to data as
it enters one filter section from the previous section. Only second-order
implementations of direct-form I transposed and direct-form II transposed
filters include this property.

The following diagram shows an SOS filter composed of sections (the bottom
part of the diagram) and a possible internal structure of each Section (the top
portion of the diagram), in this case — a direct form I transposed second order
sections filter structure. Note that the output of each section is fed through
a multiplier. If the gain of the multiplier =1, then the last Cast block of the
Section is ignored, and the format of the output is NumSumQ.

7-90

Fixed-Point Filter Properties

�������	

������	

���������	

�������	

�������	

������	
���������	

�������������������������������

�������	

��������	

������	

�������	

���	 ���	

�������	

�������	

������	

��������	

�������	

�������	

��������	 ��������	

�������	�������	

��������	

����� ������������ ������!�"	 �"	

��������	��	 ���������	 ��������	 ���������	

�"	
���	

7-91

7 Reference for the Properties of Filter Objects

SectionInputWordLength defaults to 16 bits.

SectionOutputAutoScale
Second-order section filters include this property that determines who the
filter handles data in the transitions from one section to the next in the filter.

How the filter represents the data passing from one section to the
next depends on the property value of SectionOutputAutoScale. The
representation the filter uses between the filter sections depends on whether
the value of SectionOutputAutoScale is true or false.

• SectionOutputAutoScale = true means the filter chooses the fraction
length to maintain the value of the data between sections as close to the
output values from the previous section as possible. true is the default
setting.

• SectionOutputAutoScale = false removes the automatic scaling of the
fraction length for the intersection data and exposes the property that
controls the coefficient fraction length (SectionOutputFracLength) so
you can change it. For example, if the filter is a second-order, direct
form FIR filter, setting SectionOutputAutoScale = false exposes the
SectionOutputFracLength property that specifies the fraction length
applied to data between the sections.

SectionOutputFracLength
Second-order section filters use quantizers at the output from each section
of the filter. The quantizers apply to the output data leaving each filter
section. Note that the quantizers for each section are the same. To set the
fraction length for interpreting the output values, use the property value in
SectionOutputFracLength.

In combination with CoeffWordLength, SectionOutputFracLength
determines how the filter interprets and uses the state values stored
in the property States. As with all fraction length properties,
SectionOutputFracLength can be any integer, including integers larger than
CoeffWordLength, and positive or negative integers. 15 bits is the default
value when you create the filter object.

7-92

Fixed-Point Filter Properties

SectionOutputWordLength
SOS filters are composed of sections, each one a second-order filter. Filtering
data input to the filter involves passing the data through each filter section.
SectionOutputWordLength specifies the word length applied to data as it
leaves one filter section to go to the next. Only second-order implementations
direct-form I transposed and direct-form II transposed filters include this
property.

The following diagram shows an SOS filter composed of sections (the bottom
part of the diagram) and a possible internal structure of each Section (the top
portion of the diagram), in this case — a direct form I transposed second order
sections filter structure. Note that the output of each section is fed through
a multiplier. If the gain of the multiplier =1, then the last Cast block of the
Section is ignored, and the format of the output is NumSumQ.

7-93

7 Reference for the Properties of Filter Objects

�������	

������	

���������	

�������	

�������	

������	
���������	

�������������������������������

�������	

��������	

������	

�������	

���	 ���	

�������	

�������	

������	

��������	

�������	

�������	

��������	 ��������	

�������	�������	

��������	

����� ������������ ������!�"	 �"	

��������	��	 ���������	 ��������	 ���������	

�"	
���	

7-94

Fixed-Point Filter Properties

SectionOutputWordLength defaults to 16 bits.

StateAutoScale
Although all filters use states, some do not allow you to choose whether
the filter automatically scales the state values to prevent overruns or bad
arithmetic errors. You select either of the following settings:

• StateAutoScale = true means the filter chooses the fraction length to
maintain the value of the states as close to the double-precision values as
possible. When you change the word length applied to the states (where
allowed by the filter structure), the filter object changes the fraction length
to try to accommodate the change. true is the default setting.

• StateAutoScale = false removes the automatic scaling of the fraction
length for the states and exposes the property that controls the coefficient
fraction length so you can change it. For example, in a direct form I
transposed SOS FIR filter, setting StateAutoScale = false exposes the
NumStateFracLength and DenStateFracLength properties that specify
the fraction length applied to states.

Each of the following filter structures provides the StateAutoScale property:

• df1t

• df1tsos

• df2t

• df2tsos

• dffirt

Other filter structures do not include this property.

StateFracLength
Filter states stored in the property States have both word length and fraction
length. To set the fraction length for interpreting the stored filter object state
values, use the property value in StateFracLength.

7-95

7 Reference for the Properties of Filter Objects

In combination with CoeffWordLength, StateFracLength fully determines
how the filter interprets and uses the state values stored in the property
States.

As with all fraction length properties, StateFracLength can be any integer,
including integers larger than CoeffWordLength, and positive or negative
integers. 15 bits is the default value when you create the filter object.

States
Digital filters are dynamic systems. The behavior of dynamic systems (their
response) depends on the input (stimulus) to the system and the current or
previous state of the system. You can say the system has memory or inertia.
All fixed- or floating-point digital filters (as well as analog filters) have states.

Filters use the states to compute the filter output for each input sample, as
well using them while filtering in loops to maintain the filter state between
loop iterations. This toolbox assumes zero-valued initial conditions (the
dynamic system is at rest) by default when you filter the first input sample.
Assuming the states are zero initially does not mean the states are not used;
they are, but arithmetically they do not have any effect.

Filter objects store the state values in the property States. The number of
stored states depends on the filter implementation, since the states represent
the delays in the filter implementation.

When you review the display for a filter object with fixed arithmetic, notice
that the states return an embedded fi object, as you see here.

b = ellip(6,3,50,300/500);

hd=dfilt.dffir(b)

hd =

FilterStructure: 'Direct-Form FIR'

Arithmetic: 'double'

Numerator: [0.0773 0.2938 0.5858 0.7239 0.5858 0.2938 0.0773]

PersistentMemory: false

States: [6x1 double]

7-96

Fixed-Point Filter Properties

hd.arithmetic='fixed'

hd =

FilterStructure: 'Direct-Form FIR'

Arithmetic: 'fixed'

Numerator: [0.0773 0.2938 0.5858 0.7239 0.5858 0.2938 0.0773]

PersistentMemory: false

States: [1x1 embedded.fi]

CoeffWordLength: 16

CoeffAutoScale: 'on'

Signed: 'on'

InputWordLength: 16

InputFracLength: 15

OutputWordLength: 16

OutputMode: 'AvoidOverflow'

ProductMode: 'FullPrecision'

AccumWordLength: 40

CastBeforeSum: 'on'

RoundMode: 'convergent'

OverflowMode: 'wrap'

InheritSettings: 'off'

fi objects provide fixed-point support for the filters. To learn more about the
details about fi objects, refer to your Fixed-Point Toolbox documentation.

The property States lets you use a fi object to define how the filter interprets
the filter states. For example, you can create a fi object in MATLAB, then
assign the object to States, as follows:

statefi=fi([],16,12)

7-97

7 Reference for the Properties of Filter Objects

statefi =

[]
DataTypeMode = Fixed-point: binary point scaling

Signed = true
Wordlength = 16

Fractionlength = 12

This fi object does not have a value associated (notice the [] input argument
to fi for the value), and it has word length of 16 bits and fraction length of 12
bit. Now you can apply statefi to the States property of the filter hd.

set(hd,'States',statefi);
Warning: The 'States' property will be reset to the value
specified at construction before filtering.
Set the 'PersistentMemory' flag to 'True'
to avoid changing this property value.
hd

hd =

FilterStructure: 'Direct-Form FIR'
Arithmetic: 'fixed'
Numerator: [0.0773 0.2938 0.5858 0.7239 0.5858

0.2938 0.0773]
PersistentMemory: false

States: [1x1 embedded.fi]

CoeffWordLength: 16
CoeffAutoScale: 'on'

Signed: 'on'

InputWordLength: 16
InputFracLength: 15

OutputWordLength: 16
OutputMode: 'AvoidOverflow'

ProductMode: 'FullPrecision'
AccumWordLength: 40

7-98

Fixed-Point Filter Properties

CastBeforeSum: 'on'

RoundMode: 'convergent'
OverflowMode: 'wrap'

StateWordLength
While all filters use states, some do not allow you to directly change the state
representation — the word length and fraction lengths — independently. For
the others, StateWordLength specifies the word length, in bits, the filter uses
to represent the states. Filters that do not provide direct state word length
control include:

• df1

• dfasymfir

• dffir

• dfsymfir

For these structures, the filter derives the state format from the input format
you choose for the filter — except for the df1 IIR filter. In this case, the
numerator state format comes from the input format and the denominator
state format comes from the output format. All other filter structures provide
control of the state format directly.

TapSumFracLength
Direct-form FIR filter objects, both symmetric and antisymmetric, use this
property. To set the fraction length for output from the sum operations that
involve the filter tap weights, use the property value in TapSumFracLength. To
enable this property, set the TapSumMode to SpecifyPrecision in your filter.

As you can see in this code example that creates a fixed-point asymmetric FIR
filter, the TapSumFracLength property becomes available after you change the
TapSumMode property value.

hd=dfilt.dfasymfir

hd =

7-99

7 Reference for the Properties of Filter Objects

FilterStructure: 'Direct-Form Antisymmetric FIR'
Arithmetic: 'double'
Numerator: 1

PersistentMemory: false
States: [0x1 double]

set(hd,'arithmetic','fixed');
hd

hd =

FilterStructure: 'Direct-Form Antisymmetric FIR'
Arithmetic: 'fixed'
Numerator: 1

PersistentMemory: false
States: [1x1 embedded.fi]

CoeffWordLength: 16
CoeffAutoScale: true

Signed: true

InputWordLength: 16
InputFracLength: 15

OutputWordLength: 16
OutputMode: 'AvoidOverflow'

TapSumMode: 'KeepMSB'
TapSumWordLength: 17

ProductMode: 'FullPrecision'

AccumWordLength: 40

CastBeforeSum: true
RoundMode: 'convergent'

OverflowMode: 'wrap'

7-100

Fixed-Point Filter Properties

With the filter now in fixed-point mode, you can change the TapSumMode
property value to SpecifyPrecision, which gives you access to the
TapSumFracLength property.

set(hd,'TapSumMode','SpecifyPrecision');
hd

hd =

FilterStructure: 'Direct-Form Antisymmetric FIR'
Arithmetic: 'fixed'
Numerator: 1

PersistentMemory: false
States: [1x1 embedded.fi]

CoeffWordLength: 16
CoeffAutoScale: true

Signed: true

InputWordLength: 16
InputFracLength: 15

OutputWordLength: 16
OutputMode: 'AvoidOverflow'

TapSumMode: 'SpecifyPrecision'
TapSumWordLength: 17
TapSumFracLength: 15

ProductMode: 'FullPrecision'

AccumWordLength: 40

CastBeforeSum: true
RoundMode: 'convergent'

OverflowMode: 'wrap'

In combination with TapSumWordLength, TapSumFracLength fully determines
how the filter interprets and uses the state values stored in the property
States.

7-101

7 Reference for the Properties of Filter Objects

As with all fraction length properties, TapSumFracLength can be any integer,
including integers larger than TapSumWordLength, and positive or negative
integers. 15 bits is the default value when you create the filter object.

TapSumMode
This property, available only after your filter is in fixed-point mode, specifies
how the filter outputs the results of summation operations that involve the
filter tap weights. Only symmetric (dfilt.dfsymfir) and antisymmetric
(dfilt.dfasymfir) FIR filters use this property.

When available, you select from one of the following values:

• FullPrecision— means the filter automatically chooses the word length
and fraction length to represent the results of the sum operation so they
retain all of the precision provided by the inputs (addends).

• KeepMSB — means you specify the word length for representing tap sum
summation results to keep the higher order bits in the data. The filter sets
the fraction length to discard the LSBs from the sum operation. This is
the default property value.

• KeepLSB — means you specify the word length for representing tap sum
summation results to keep the lower order bits in the data. The filter sets
the fraction length to discard the MSBs from the sum operation. Compare
to the KeepMSB option.

• SpecifyPrecision— means you specify the word and fraction lengths to
apply to data output from the tap sum operations.

TapSumWordLength
Specifies the word length the filter uses to represent the output from tap
sum operations. The default value is 17 bits. Only dfasymfir and dfsymfir
filters include this property.

7-102

Adaptive Filter Properties

Adaptive Filter Properties

In this section...

“Property Summaries” on page 7-103
“Property Details for Adaptive Filter Properties” on page 7-108

Property Summaries
The following table summarizes the adaptive filter properties and provides a
brief description of each. Full descriptions of each property, in alphabetical
order, are given in the subsequent section.

Property Description

Algorithm Reports the algorithm the object uses for
adaptation. When you construct your adaptive
filter object, this property is set automatically
by the constructor, such as adaptfilt.nlms
creating an adaptive filter that uses the
normalized LMS algorithm. You cannot change
the value — it is read only.

AvgFactor Averaging factor used to compute the
exponentially-windowed estimates of the powers
in the transformed signal bins for the coefficient
updates. AvgFactor should lie between zero and
one. For default filter objects, AvgFactor equals
(1 - step). lambda is the input argument that
represents AvgFactor

BkwdPredErrorPower Returns the minimum mean-squared prediction
error. Refer to [2] in the bibliography for details
about linear prediction.

BkwdPrediction Returns the predicted samples generated during
adaptation. Refer to [2] in the bibliography for
details about linear prediction.

7-103

7 Reference for the Properties of Filter Objects

Property Description

Blocklength Block length for the coefficient updates.
This must be a positive integer such that
(l/blocklength) is also an integer. For faster
execution, blocklength should be a power of
two. blocklength defaults to two.

Coefficients Vector containing the initial filter coefficients. It
must be a length l vector where l is the number
of filter coefficients. coeffs defaults to length
l vector of zeros when you do not provide the
argument for input.

ConversionFactor Conversion factor defaults to the matrix [1 -1]
that specifies soft-constrained initialization.
This is the gamma input argument for some of
the fast transversal algorithms.

Delay Update delay given in time samples. This
scalar should be a positive integer—negative
delays do not work. delay defaults to 1 for most
algorithms.

DesiredSignalStates Desired signal states of the adaptive filter.
dstates defaults to a zero vector with length
equal to (blocklen - 1) or (swblocklen - 1)
depending on the algorithm.

EpsilonStates Vector of the epsilon values of the adaptive filter.
EpsilonStates defaults to a vector of zeros with
(projectord - 1) elements.

ErrorStates Vector of the adaptive filter error states.
ErrorStates defaults to a zero vector with
length equal to (projectord - 1).

FFTCoefficients Stores the discrete Fourier transform of the
filter coefficients in coeffs.

FFTStates Stores the states of the FFT of the filter
coefficients during adaptation.

FilteredInputStates Vector of filtered input states with length equal
to l - 1.

7-104

Adaptive Filter Properties

Property Description

FilterLength Contains the length of the filter. Note that this
is not the filter order. Filter length is 1 greater
than filter order. Thus a filter with length equal
to 10 has filter order equal to 9.

ForgettingFactor Determines how the RLS adaptive filter uses
past data in each iteration. You use the
forgetting factor to specify whether old data
carries the same weight in the algorithm as
more recent data.

FwdPredErrorPower Returns the minimum mean-squared prediction
error in the forward direction. Refer to [2] in the
bibliography for details about linear prediction.

FwdPrediction Contains the predicted values for samples
during adaptation. Compare these to the actual
samples to get the error and power.

InitFactor Soft-constrained initialization factor. This
scalar should be positive and sufficiently large
to prevent an excessive number of Kalman gain
rescues. Called delta as an input argument,
this defaults to one.

InvCov Upper-triangular Cholesky (square root) factor
of the input covariance matrix. Initialize this
matrix with a positive definite upper triangular
matrix. Dimensions are l-by-l, where l is the
filter length.

KalmanGain Empty when you construct the object, this gets
populated after you run the filter.

KalmanGainStates Contains the states of the Kalman gain updates
during adaptation.

7-105

7 Reference for the Properties of Filter Objects

Property Description

Leakage Contains the setting for leakage in the adaptive
filter algorithm. Using a leakage factor that is
not 1 forces the weights to adapt even when they
have found the minimum error solution. Forcing
the adaptation can improve the numerical
performance of the LMS algorithm.

OffsetCov Contains the offset covariance matrix.
Offset Specifies an optional offset for the denominator

of the step size normalization term. You must
specify offset to be a scalar greater than or
equal to zero. Nonzero offsets can help avoid a
divide-by-near-zero condition that causes errors.

Power A vector of 2*l elements, each initialized with
the value delta from the input arguments. As
you filter data, Power gets updated by the filter
process.

ProjectionOrder Projection order of the affine projection
algorithm. projectord defines the size of the
input signal covariance matrix and defaults to
two.

ReflectionCoeffs Coefficients determined for the reflection portion
of the filter during adaptation.

ReflectionCoeffsStep Size of the steps used to determine the reflection
coefficients.

PersistentMemory Specifies whether to reset the filter states and
memory before each filtering operation. Lets
you decide whether your filter retains states and
coefficients from previous filtering runs.

SecondaryPathCoeffs A vector that contains the coefficient values of
your secondary path from the output actuator to
the error sensor.

SecondaryPathEstimate An estimate of the secondary path filter model.

7-106

Adaptive Filter Properties

Property Description

SecondaryPathStates The states of the secondary path filter, the
unknown system.

SqrtCov Upper-triangular Cholesky (square root) factor
of the input covariance matrix. Initialize this
matrix with a positive definite upper triangular
matrix.

SqrtlnvCov Square root of the inverse of the sliding window
input signal covariance matrix. This square
matrix should be full-ranked.

States Vector of the adaptive filter states. states
defaults to a vector of zeros whose length
depends on the chosen algorithm. Usually the
length is a function of the filter length l and
another input argument to the filter object, such
as projectord.

StepSize Reports the size of the step taken between
iterations of the adaptive filter process. Each
adaptfilt object has a default value that best
meets the needs of the algorithm.

SwBlockLength Block length of the sliding window. This integer
must be at least as large as the filter length.
swblocklen defaults to 16.

Like dfilt objects, adaptfilt objects have properties that govern their
behavior and store some of the results of filtering operations. The following
pages list, in alphabetical order, the name of every property associated with
adaptfilt objects. Note that not all adaptfilt objects have all of these
properties. To view the properties of a particular adaptive filter, such as an
adaptfilt.bap filter, use get with the object handle, like this:

ha = adaptfilt.bap(32,0.5,4,1.0);

get(ha)

PersistentMemory: false

Algorithm: 'Block Affine Projection FIR Adaptive Filter'

FilterLength: 32

Coefficients: [1x32 double]

7-107

7 Reference for the Properties of Filter Objects

States: [35x1 double]

StepSize: 0.5000

ProjectionOrder: 4

OffsetCov: [4x4 double]

get shows you the properties for ha and the values for the properties.
Entering the object handle returns the same values and properties without
the formatting of the list and the more familiar property names.

Property Details for Adaptive Filter Properties

Algorithm
Reports the algorithm the object uses for adaptation. When you construct you
adaptive filter object, this property is set automatically. You cannot change
the value—it is read only.

AvgFactor
Averaging factor used to compute the exponentially-windowed estimates of the
powers in the transformed signal bins for the coefficient updates. AvgFactor
should lie between zero and one. For default filter objects, AvgFactor equals
(1 - step). lambda is the input argument that represent AvgFactor

BkwdPredErrorPower
Returns the minimum mean-squared prediction error in the backward
direction. Refer to [2] in the bibliography for details about linear prediction.

BkwdPrediction
When you use an adaptive filter that does backward prediction, such as
adaptfilt.ftf, one property of the filter contains the backward prediction
coefficients for the adapted filter. With these coefficient, the forward
coefficients, and the system under test, you have the full set of knowledge of
how the adaptation occurred. Two values stored in properties compose the
BkwdPrediction property:

• Coefficients, which contains the coefficients of the system under test, as
determined using backward predictions process.

7-108

Adaptive Filter Properties

• Error, which is the difference between the filter coefficients determined by
backward prediction and the actual coefficients of the sample filter. In
this example, adaptfilt.ftf identifies the coefficients of an unknown
FIR system.

x = randn(1,500); % Input to the filter

b = fir1(31,0.5); % FIR system to be identified

n = 0.1*randn(1,500); % Observation noise signal

d = filter(b,1,x)+n; % Desired signal

N = 31; % Adaptive filter order

lam = 0.99; % RLS forgetting factor

del = 0.1; % Soft-constrained initialization factor

ha = adaptfilt.ftf(32,lam,del);

[y,e] = filter(ha,x,d);

ha

ha =

Algorithm: 'Fast Transversal Least-Squares Adaptive Filter'

FilterLength: 32

Coefficients: [1x32 double]

States: [31x1 double]

ForgettingFactor: 0.9900

InitFactor: 0.1000

FwdPrediction: [1x1 struct]

BkwdPrediction: [1x1 struct]

KalmanGain: [32x1 double]

ConversionFactor: 0.7338

KalmanGainStates: [32x1 double]

PersistentMemory: false

ha.coefficients

ans =

Columns 1 through 8

-0.0055 0.0048 0.0045 0.0146 -0.0009 0.0002 -0.0019 0.0008

7-109

7 Reference for the Properties of Filter Objects

Columns 9 through 16

-0.0142 -0.0226 0.0234 0.0421 -0.0571 -0.0807 0.1434 0.4620

Columns 17 through 24

0.4564 0.1532 -0.0879 -0.0501 0.0331 0.0361 -0.0266 -0.0220

Columns 25 through 32

0.0231 0.0026 -0.0063 -0.0079 0.0032 0.0082 0.0033 0.0065

ha.bkwdprediction

ans =

Coeffs: [1x32 double]

Error: 82.3394

>> ha.bkwdprediction.coeffs

ans =

Columns 1 through 8

0.0067 0.0186 0.1114 -0.0150 -0.0239 -0.0610 -0.1120 -0.1026

Columns 9 through 16

0.0093 -0.0399 -0.0045 0.0622 0.0997 0.0778 0.0646 -0.0564

Columns 17 through 24

0.0775 0.0814 0.0057 0.0078 0.1271 -0.0576 0.0037 -0.0200

Columns 25 through 32

-0.0246 0.0180 -0.0033 0.1222 0.0302 -0.0197 -0.1162 0.0285

7-110

Adaptive Filter Properties

Blocklength
Block length for the coefficient updates. This must be a positive integer such
that (l/blocklen) is also an integer. For faster execution, blocklen should
be a power of two. blocklen defaults to two.

Coefficients
Vector containing the initial filter coefficients. It must be a length l vector
where l is the number of filter coefficients. coeffs defaults to length l vector
of zeros when you do not provide the argument for input.

ConversionFactor
Conversion factor defaults to the matrix [1 -1] that specifies soft-constrained
initialization. This is the gamma input argument for some of the fast
transversal algorithms.

Delay
Update delay given in time samples. This scalar should be a positive integer
— negative delays do not work. delay defaults to 1 for most algorithms.

DesiredSignalStates
Desired signal states of the adaptive filter. dstates defaults to a zero vector
with length equal to (blocklen - 1) or (swblocklen - 1) depending on the
algorithm.

EpsilonStates
Vector of the epsilon values of the adaptive filter. EpsilonStates defaults to
a vector of zeros with (projectord - 1) elements.

ErrorStates
Vector of the adaptive filter error states. ErrorStates defaults to a zero
vector with length equal to (projectord - 1).

FFTCoefficients
Stores the discrete Fourier transform of the filter coefficients in coeffs.

7-111

7 Reference for the Properties of Filter Objects

FFTStates
Stores the states of the FFT of the filter coefficients during adaptation.

FilteredInputStates
Vector of filtered input states with length equal to l - 1.

FilterLength
Contains the length of the filter. Note that this is not the filter order. Filter
length is 1 greater than filter order. Thus a filter with length equal to 10 has
filter order equal to 9.

ForgettingFactor
Determines how the RLS adaptive filter uses past data in each iteration. You
use the forgetting factor to specify whether old data carries the same weight
in the algorithm as more recent data.

This is a scalar and should lie in the range (0, 1]. It defaults to 1. Setting
forgetting factor = 1 denotes infinite memory while adapting to find the
new filter. Note that this is the lambda input argument.

FwdPredErrorPower
Returns the minimum mean-squared prediction error in the forward direction.
Refer to [2] in the bibliography for details about linear prediction.

FwdPrediction
Contains the predicted values for samples during adaptation. Compare these
to the actual samples to get the error and power.

InitFactor
Returns the soft-constrained initialization factor. This scalar should be
positive and sufficiently large to prevent an excessive number of Kalman
gain rescues. delta defaults to one.

7-112

Adaptive Filter Properties

InvCov
Upper-triangular Cholesky (square root) factor of the input covariance
matrix. Initialize this matrix with a positive definite upper triangular matrix.
Dimensions are l-by-l, where l is the filter length.

KalmanGain
Empty when you construct the object, this gets populated after you run the
filter.

KalmanGainStates
Contains the states of the Kalman gain updates during adaptation.

Leakage
Contains the setting for leakage in the adaptive filter algorithm. Using a
leakage factor that is not 1 forces the weights to adapt even when they have
found the minimum error solution. Forcing the adaptation can improve the
numerical performance of the LMS algorithm.

OffsetCov
Contains the offset covariance matrix.

Offset
Specifies an optional offset for the denominator of the step size normalization
term. You must specify offset to be a scalar greater than or equal to zero.
Nonzero offsets can help avoid a divide-by-near-zero condition that causes
errors.

Use this to avoid dividing by zero or by very small numbers when input signal
amplitude becomes very small, or dividing by very small numbers when any
of the FFT input signal powers become very small. offset defaults to one.

Power
A vector of 2*l elements, each initialized with the value delta from the input
arguments. As you filter data, Power gets updated by the filter process.

7-113

7 Reference for the Properties of Filter Objects

ProjectionOrder
Projection order of the affine projection algorithm. projectord defines the
size of the input signal covariance matrix and defaults to two.

ReflectionCoeffs
For adaptive filters that use reflection coefficients, this property stores them.

ReflectionCoeffsStep
As the adaptive filter changes coefficient values during adaptation, the step
size used between runs is stored here.

PersistentMemory
Determines whether the filter states and coefficients get restored to their
starting values for each filtering operation. The starting values are the values
in place when you create the filter.

PersistentMemory returns to zero any property value that the filter changes
during processing. Property values that the filter does not change are not
affected. Defaults to false.

SecondaryPathCoeffs
A vector that contains the coefficient values of your secondary path from the
output actuator to the error sensor.

SecondaryPathEstimate
An estimate of the secondary path filter model.

SecondaryPathStates
The states of the secondary path filter, the unknown system.

SqrtCov
Upper-triangular Cholesky (square root) factor of the input covariance matrix.
Initialize this matrix with a positive definite upper triangular matrix.

7-114

Adaptive Filter Properties

SqrtInvCov
Square root of the inverse of the sliding window input signal covariance
matrix. This square matrix should be full-ranked.

States
Vector of the adaptive filter states. states defaults to a vector of zeros whose
length depends on the chosen algorithm. Usually the length is a function
of the filter length l and another input argument to the filter object, such
as projectord.

StepSize
Reports the size of the step taken between iterations of the adaptive filter
process. Each adaptfilt object has a default value that best meets the needs
of the algorithm.

SwBlockLength
Block length of the sliding window. This integer must be at least as large as
the filter length. swblocklength defaults to 16.

7-115

7 Reference for the Properties of Filter Objects

Multirate Filter Properties

In this section...

“Property Summaries” on page 7-116
“Property Details for Multirate Filter Properties” on page 7-121

Property Summaries
The following table summarizes the multirate filter properties and provides
a brief description of each. Full descriptions of each property are given in
the subsequent section.

Name Values Default Description

BlockLength Positive integers 100 Length of each block of data
input to the FFT used in
the filtering. fftfirinterp
multirate filters include this
property.

DecimationFactor Any positive integer 2 Amount to reduce the input
sampling rate.

DifferentialDelay Any integer 1 Sets the differential delay
for the filter. Usually
a value of one or two is
appropriate.

7-116

Multirate Filter Properties

Name Values Default Description

FilterInternals FullPrecision,
MinWordlengths,
SpecifyWordLengths,
SpecifyPrecision

FullPrecision Controls whether the
filter sets the output
word and fraction lengths,
and the accumulator
word and fraction lengths
automatically to maintain
the best precision results
during filtering. The default
value, FullPrecision, sets
automatic word and fraction
length determination by the
filter. SpecifyPrecision
exposes the output and
accumulator related
properties so you can
set your own word and
fraction lengths for them.

FilterStructure mfilt structure
string

None Describes the signal flow for
the filter object, including
all of the active elements
that perform operations
during filtering — gains,
delays, sums, products,
and input/output. You
cannot set this property —
it is always read only and
results from your choice of
mfilt object.

InputOffset Integers 0 Contains the number
of input data samples
processed without
generating an output
sample.

7-117

7 Reference for the Properties of Filter Objects

Name Values Default Description

InterpolationFactor Positive integers 2 Interpolation factor for
the filter. l specifies the
amount to increase the
input sampling rate.

NumberOfSections Any positive integer 2 Number of sections used
in the decimator, or in
the comb and integrator
portions of CIC filters.

Numerator Array of double
values

No default
values

Vector containing the
coefficients of the FIR
lowpass filter used for
interpolation.

OverflowMode saturate, [wrap] wrap Sets the mode used to
respond to overflow
conditions in fixed-point
arithmetic. Choose from
either saturate (limit the
output to the largest
positive or negative
representable value) or
wrap (set overflowing values
to the nearest representable
value using modular
arithmetic. The choice
you make affects only the
accumulator and output
arithmetic. Coefficient and
input arithmetic always
saturates. Finally, products
never overflow — they
maintain full precision.

7-118

Multirate Filter Properties

Name Values Default Description

PolyphaseAccum Values depend on
filter type. Either
double, single, or
fixed-point object

0 Stores the value remaining
in the accumulator after
the filter processes the last
input sample. The stored
value for PolyphaseAccum
affects the next output
when PersistentMemory
is true and InputOffset
is not equal to 0. Always
provides full precision
values. Compare the
AccumWordLength and
AccumFracLength.

PersistentMemory false or true false Determines whether the
filter states get restored
to their starting values for
each filtering operation.
The starting values are
the values in place when
you create the filter if you
have not changed the filter
since you constructed it.
PersistentMemory returns
to zero any state that
the filter changes during
processing. States that the
filter does not change are
not affected.

RateChangeFactors [l,m] [2,3] or [3,2] Reports the decimation
(m) and interpolation (l)
factors for the filter object.
Combining these factors
results in the final rate
change for the signal. The
default changes depending
on whether the filter
decimates or interpolates.

7-119

7 Reference for the Properties of Filter Objects

Name Values Default Description

States Any m+1-by-n matrix
of double values

2-by-2 matrix,
int32

Stored conditions for the
filter, including values for
the integrator and comb
sections. n is the number of
filter sections and m is the
differential delay. Stored in
a filtstates object.

SectionWordLengthMode MinWordLengths or
SpecifyWordLengths

MinWordLength Determines whether the
filter object sets the section
word lengths or you provide
the word lengths explicitly.
By default, the filter uses
the input and output word
lengths in the command to
determine the proper word
lengths for each section,
according to the information
in “Constraints and Word
Length Considerations”.
When you choose
SpecifyWordLengths,
you provide the word
length for each section.
In addition, choosing
SpecifyWordLengths
exposes the
SectionWordLengths
property for you to modify
as needed.

7-120

Multirate Filter Properties

Name Values Default Description

SpecifyWordLengths Vector of integers [16 16 16
16] bits

WordLengthPerSection Any integer or a
vector of length 2*n

16 Defines the word length
used in each section while
accumulating the data in
the integrator sections
or while subtracting
the data during the
comb sections (using
’wrap’ arithmetic). Enter
WordLengthPerSection
as a scalar or vector of
length 2*n, where n is the
number of sections. When
WordLengthPerSection is
a scalar, the scalar value is
applied to each filter section.
The default is 16 for each
section in the decimator.

The following sections provide details about the properties that govern the
way multirate filter work. Creating any multirate filter object puts in place
a number of these properties. The following pages list the mfilt object
properties in alphabetical order.

Property Details for Multirate Filter Properties

BitsPerSection
Any integer or a vector of length 2*n.

Defines the bits per section used while accumulating the data in the integrator
sections or while subtracting the data during the comb sections (using wrap
arithmetic). Enter bps as a scalar or vector of length 2*n, where n is the
number of sections. When bps is a scalar, the scalar value is applied to each
filter section. The default is 16 for each section in the decimator.

7-121

7 Reference for the Properties of Filter Objects

BlockLength
Length of each block of input data used in the filtering.

mfilt.fftfirinterp objects process data in blocks whose length is
determined by the value you set for the BlockLength property. By default the
property value is 100. When you set the BlockLength value, try choosing a
value so that [BlockLength + length(filter order)] is a power of two.

Larger block lengths generally reduce the computation time.

DecimationFactor
Decimation factor for the filter. m specifies the amount to reduce the sampling
rate of the input signal. It must be an integer. You can enter any integer
value. The default value is 2.

DifferentialDelay
Sets the differential delay for the filter. Usually a value of one or two is
appropriate. While you can set any value, the default is one and the maximum
is usually two.

FilterInternals
Similar to the FilterInternals pane in FDATool, this property controls whether
the filter sets the output word and fraction lengths automatically, and the
accumulator word and fraction lengths automatically as well, to maintain the
best precision results during filtering. The default value, FullPrecision,
sets automatic word and fraction length determination by the filter. Setting
FilterInternals to SpecifyPrecision exposes the output and accumulator
related properties so you can set your own word and fraction lengths for them.

About FilterInternals Mode. There are four usage modes for this that you
set using the FilterInternals property in multirate filters.

• FullPrecision — All word and fraction lengths set to Bmax + 1, called
Baccum by fred harris in [2]. Full precision is the default setting.

• MinWordLengths — Minimum Word Lengths

• SpecifyWordLengths — Specify Word Lengths

7-122

Multirate Filter Properties

• SpecifyPrecision — Specify Precision

Full Precision

In full precision mode, the word lengths of all sections and the output are set
to Baccum as defined by

where Nsecs is the number of filter sections.

Section fraction lengths and the fraction length of the output are set to the
input fraction length.

Here is the display looks for this mode.

FilterStructure: 'Cascaded Integrator-Comb Decimator'
Arithmetic: 'fixed'
DifferentialDelay: 1
NumberOfSections: 2
DecimationFactor: 4
PersistentMemory: false

InputWordLength: 16
InputFracLength: 15

FilterInternals: 'FullPrecision'

Minimum Word Lengths

In minimum word length mode, you control the output word length explicitly.
When the output word length is less than Baccum, roundoff noise is introduced
at the output of the filter. Hogenauer’s bit pruning theory (refer to [3]) states
that one valid design criterion is to make the word lengths of the different
sections of the filter smaller than Baccum as well, so that the roundoff noise
introduced by all sections does not exceed the roundoff noise introduced at
the output.

In this mode, the design calculates the word lengths of each section to
meet the Hogenauer criterion. The algorithm subtracts the number of bits

7-123

7 Reference for the Properties of Filter Objects

computed using eq. 21 in Hogenauer’s paper from Baccum to determine the
word length each section.

To compute the fraction lengths of the different sections, the algorithm notes
that the bits thrown out for this word length criterion are least significant
bits (LSB), therefore each bit thrown out at a particular section decrements
the fraction length of that section by one bit compared to the input fraction
length. Setting the output word length for the filter automatically sets the
output fraction length as well.

Here is the display for this mode:

FilterStructure: 'Cascaded Integrator-Comb Decimator'
Arithmetic: 'fixed'
DifferentialDelay: 1
NumberOfSections: 2
DecimationFactor: 4
PersistentMemory: false

InputWordLength: 16
InputFracLength: 15

FilterInternals: 'MinWordLengths'

OutputWordLength: 16

Specify Word Lengths

In this mode, the design algorithm discards the LSBs, adjusting the fraction
length so that unrecoverable overflow does not occur, always producing a
reasonable output.

You can specify the word lengths for all sections and the output, but you
cannot control the fraction lengths for those quantities.

To specify the word lengths, you enter a vector of length
2*(NumberOfSections), where each vector element represents the word length
for a section. If you specify a calar, such as Baccum, the full-precision output
word length, the algorithm expands that scalar to a vector of the appropriate
size, applying the scalar value to each section.

7-124

Multirate Filter Properties

The CIC design does not check that the specified word lengths are
monotonically decreasing. There are some cases where the word lengths are
not necessarily monotonically decreasing, for example

hcic=mfilt.cicdecim;
hcic.FilterInternals='minwordlengths';
hcic.Outputwordlength=14;

which are valid CIC filters but the word lengths do not decrease monotonically
across the sections.

Here is the display looks like for the SpecifyWordLengths mode.

FilterStructure: 'Cascaded Integrator-Comb Decimator'
Arithmetic: 'fixed'
DifferentialDelay: 1
NumberOfSections: 2
DecimationFactor: 4
PersistentMemory: false

InputWordLength: 16
InputFracLength: 15

FilterInternals: 'SpecifyWordLengths'

SectionWordLengths: [19 18 18 17]

OutputWordLength: 16

Specify Precision

In this mode, you have full control over the word length and fraction lengths
of all sections and the filter output.

When you elect the SpecifyPrecision mode, you must enter a vector of
length 2*(NumberOfSections) with elements that represent the word length
for each section. When you enter a scalar such as Baccum, the CIC algorithm
expands that scalar to a vector of the appropriate size and applies the scalar
value to each section and the output. The design does not check that this
vector is monotonically decreasing.

7-125

7 Reference for the Properties of Filter Objects

Also, you must enter a vector of length 2*(NumberOfSections) with elements
that represent the fraction length for each section as well. When you enter
a calar such as Baccum, the design applies scalar expansion as done for the
word lengths.

Here is the SpecifyPrecision display.

FilterStructure: 'Cascaded Integrator-Comb Decimator'
Arithmetic: 'fixed'
DifferentialDelay: 1
NumberOfSections: 2
DecimationFactor: 4
PersistentMemory: false

InputWordLength: 16
InputFracLength: 15

FilterInternals: 'SpecifyPrecision'

SectionWordLengths: [19 18 18 17]
SectionFracLengths: [14 13 13 12]

OutputWordLength: 16
OutputFracLength: 11

FilterStructure
Reports the type of filter object, such as a decimator or fractional integrator.
You cannot set this property — it is always read only and results from your
choice of mfilt object. Because of the length of the names of multirate
filters, FilterStructure often returns a vector specification for the string.
For example, when you use mfilt.firfracinterp to design a filter,
FilterStructure returns as [1x49 char].

hm=mfilt.firfracinterp

hm =

FilterStructure: [1x49 char]
Numerator: [1x72 double]

RateChangeFactors: [3 2]

7-126

Multirate Filter Properties

PersistentMemory: false
States: [24x1 double]

InputOffset
When you decimate signals whose length is not a multiple of the decimation
factor M, the last samples — (nM +1) to [(n+1)(M) -1], where n is an integer —
are processed and used to track where the filter stopped processing input data
and when to expect the next output sample. If you think of the filtering process
as generating an output for a block of input data, InputOffset contains a
count of the number of samples in the last incomplete block of input data.

Note InputOffset applies only when you set PersistentMemory to true.
Otherwise, InputOffset is not available for you to use.

Two different cases can arise when you decimate a signal:

1 The input signal is a multiple of the filter decimation factor. In this case,
the filter processes the input samples and generates output samples for all
inputs as determined by the decimation factor. For example, processing
99 input samples with a filter that decimates by three returns 33 output
samples.

2 The input signal is not a multiple of the decimation factor. When this
occurs, the filter processes all of the input samples, generates output
samples as determined by the decimation factor, and has one or more input
samples that were processed but did not generate an output sample.

For example, when you filter 100 input samples with a filter which has
decimation factor of 3, you get 33 output samples, and 1 sample that did
not generate an output. In this case, InputOffset stores the value 1 after
the filter run.

InputOffset equal to 1 indicates that, if you divide your input signal into
blocks of data with length equal to your filter decimation factor, the filter
processed one sample from a new (incomplete) block of data. Subsequent
inputs to the filter are concatenated with this single sample to form the
next block of length m.

7-127

7 Reference for the Properties of Filter Objects

One way to define the value stored in InputOffset is

InputOffset = mod(length(nx),m)

where nx is the number of input samples in the data set and m is the
decimation factor.

Storing InputOffset in the filter allows you to stop filtering a signal at
any point and start over from there, provided that the PersistentMemory
property is set to true. Being able to resume filtering after stopping a
signal lets you break large data sets in to smaller pieces for filtering. With
PersistentMemory set to true and the InputOffset property in the filter,
breaking a signal into sections of arbitrary length and filtering the sections
is equivalent to filtering the entire signal at once.

xtot=[x,x];

ytot=filter(hm1,xtot)

ytot =

0 -0.0003 0.0005 -0.0014 0.0028 -0.0054 0.0092

reset(hm1); % Clear history of the filter

hm1.PersistentMemory='true';

ysec=[filter(hm1,x) filter(hm1,x)]

ysec =

0 -0.0003 0.0005 -0.0014 0.0028 -0.0054 0.0092

This test verifies that ysec (the signal filtered by sections) is equal to ytot
(the entire signal filtered at once).

InterpolationFactor
Amount to increase the sampling rate. Interpolation factor for the filter. It
specifies the amount to increase the input sampling rate. It must be an
integer. Two is the default value. You may use any positive value.

NumberOfSections
Number of sections used in the multirate filter. By default multirate filters
use two sections, but any positive integer works.

7-128

Multirate Filter Properties

OverflowMode
The OverflowMode property is specified as one of the following two strings
indicating how to respond to overflows in fixed-point arithmetic:

• 'saturate' — saturate overflows.

When the values of data to be quantized lie outside of the range of the
largest and smallest representable numbers (as specified by the applicable
word length and fraction length properties), these values are quantized to
the value of either the largest or smallest representable value, depending
on which is closest.

• 'wrap'— wrap all overflows to the range of representable values.

When the values of data to be quantized lie outside of the range of the
largest and smallest representable numbers (as specified by the data format
properties), these values are wrapped back into that range using modular
arithmetic relative to the smallest representable number. You can learn
more about modular arithmetic in Fixed-Point Toolbox documentation.

These rules apply to the OverflowMode property.

• Applies to the accumulator and output data only.

• Does not apply to coefficients or input data. These always saturate the
results.

• Does not apply to products. Products maintain full precision at all times.
Your filters do not lose precision in the products.

Default value: 'saturate'

Note Numbers in floating-point filters that extend beyond the dynamic range
overflow to ±inf.

PolyphaseAccum
The idea behind PolyphaseAccum and AccumWordLength/AccumFracLength
is to distinguish between the adders that always work in full precision
(PolyphaseAccum) from the others [the adders that are controlled by the

7-129

7 Reference for the Properties of Filter Objects

user (through AccumWordLength and AccumFracLength) and that may
introduce quantization effects when you set property FilterInternals to
SpecifyPrecision].

Given a product format determined by the input word and fraction
lengths, and the coefficients word and fraction lengths, doing full precision
accumulation means allowing enough guard bits to avoid overflows and
underflows.

Property PolyphaseAccum stores the value that was in the accumulator the
last time your filter ran out of input samples to process. The default value for
PolyphaseAccum affects the next output only if PersistentMemory is true
and InputOffset is not equal to 0.

PolyphaseAccum stores data in the format for the filter arithmetic.
Double-precision filters store doubles in PolyphaseAccum. Single-precision
filter store singles in PolyphaseAccum. Fixed-point filters store fi objects
in PolyphaseAccum.

PersistentMemory
Determine whether the filter states get restored to their starting values for
each filtering operation. The starting values are the values in place when you
create the filter if you have not changed the filter since you constructed it.
PersistentMemory returns to zero any state that the filter changes during
processing. States that the filter does not change are not affected.

Determine whether the filter states get restored to their starting values for
each filtering operation. The starting values are the values in place when you
create the filter object. PersistentMemory returns to zero any state that the
filter changes during processing. States that the filter does not change are
not affected. Defaults to true — the filter retains memory about filtering
operations from one to the next. Maintaining memory lets you filter large
data sets as collections of smaller subsets and get the same result.

xtot=[x,x];

ytot=filter(hm1,xtot)

ytot =

0 -0.0003 0.0005 -0.0014 0.0028 -0.0054 0.0092

7-130

Multirate Filter Properties

reset(hm1); % Clear history of the filter

hm1.PersistentMemory='true';

ysec=[filter(hm1,x) filter(hm1,x)]

ysec =

0 -0.0003 0.0005 -0.0014 0.0028 -0.0054 0.0092

This test verifies that ysec (the signal filtered by sections) is equal to ytot
(the entire signal filtered at once).

RateChangeFactors
Reports the decimation (m) and interpolation (l) factors for the filter object
when you create fractional integrators and decimators, although m and l
are used as arguments to both decimators and integrators, applying the
same meaning. Combining these factors as input arguments to the fractional
decimator or integrator results in the final rate change for the signal.

For decimating filters, the default is [2,3]. For integrators, [3,2].

States
Stored conditions for the filter, including values for the integrator and comb
sections. m is the differential delay and n is the number of sections in the filter.

About the States of Multirate Filters. In the states property you find
the states for both the integrator and comb portions of the filter, stored in a
filtstates object. states is a matrix of dimensions m+1-by-n, with the states
in CIC filters apportioned as follows:

• States for the integrator portion of the filter are stored in the first row
of the state matrix.

• States for the comb portion fill the remaining rows in the state matrix.

In the state matrix, state values are specified and stored in double format.

States stores conditions for the delays between each interpolator phase, the
filter states, and the states at the output of each phase in the filter, including
values for the interpolator and comb states.

7-131

7 Reference for the Properties of Filter Objects

The number of states is (lh-1)*m+(l-1)*(lo+mo) where lh is the length of each
subfilter, and l and m are the interpolation and decimation factors. lo and mo,
the input and output delays between each interpolation phase, are integers
from Euclid’s theorem such that lo*l-mo*m = -1 (refer to the reference for more
details). Use euclidfactors to get lo and mo for an mfilt.firfracdecim
object.

States defaults to a vector of zeros that has length equal to nstates(hm)

7-132

A

Bibliography

• “Advanced Filters” on page A-1

• “Adaptive Filters” on page A-2

• “Multirate Filters” on page A-2

• “Frequency Transformations” on page A-3

Advanced Filters
[1] Antoniou, A., Digital Filters: Analysis, Design, and Applications, Second
Edition, McGraw-Hill, Inc., 1993.

[2] Chirlian, P.M., Signals and Filters, Van Nostrand Reinhold, 1994.

[3] Fliege, N.J., Multirate Digital Signal Processing, John Wiley and Sons,
1994.

[4] Jackson, L., Digital Filtering and Signal Processing with MATLAB
Exercises, Third edition, Kluwer Academic Publishers, 1996.

[5] Lapsley, P., J. Bier, A. Sholam, and E.A. Lee, DSP Processor
Fundamentals: Architectures and Features, IEEE Press, 1997.

[6] McClellan, J.H., C.S. Burrus, A.V. Oppenheim, T.W. Parks, R.W. Schafer,
and H.W. Schuessler, Computer-Based Exercises for Signal Processing Using
MATLAB 5, Prentice-Hall, 1998.

[7] Mayer-Baese, U., Digital Signal Processing with Field Programmable Gate
Arrays, Springer, 2001, refer to the BiQuad block diagram on pp. 126 and the
IIR Butterworth example on pp. 140.

A Bibliography

[8] Moler, C., “Floating points: IEEE Standard unifies arithmetic
model.” Cleve’s Corner, The MathWorks, Inc., 1996. See
http://www.mathworks.com/company/newsletter/pdf/Fall96Cleve.pdf.

[9] Oppenheim, A.V., and R.W. Schafer, Discrete-Time Signal Processing,
Prentice-Hall, 1989.

[10] Shajaan, M., and J. Sorensen, “Time-Area Efficient Multiplier-Free
Recursive Filter Architectures for FPGA Implementation,” IEEE International
Conference on Acoustics, Speech, and Signal Processing, 1996, pp. 3269-3272.

Adaptive Filters
[1] Hayes, M.H., Statistical Digital Signal Processing and Modeling, John
Wiley and Sons, 1996.

[2] Haykin, S., Adaptive Filter Theory, Third Edition, Prentice-Hall, Inc.,
1996.

Multirate Filters
[1] Fliege, N.J., Multirate Digital Signal Processing, John Wiley and Sons,
1994.

[2] Harris, Fredric J, Multirate Signal Processing for Communication
Systems, Prentice Hall PTR, 2004.

[3] Hogenauer, E. B., “An Economical Class of Digital Filters for Decimation
and Interpolation,” IEEE Transactions on Acoustics, Speech, and Signal
Processing, Vol. ASSP-29, No. 2, April 1981, pp. 155-162.

[4] Lyons, Richard G., Understanding Digital Signal Processing, Prentice
Hall PTR, 2004

[5] Mitra, S.K., Digital Signal Processing, McGraw-Hill, 1998.

A-2

http://www.mathworks.com/company/newsletter/pdf/Fall96Cleve.pdf

Frequency Transformations

[6] Orfanidis, S.J., Introduction to Signal Processing, Prentice-Hall, Inc.,
1996.

Frequency Transformations
[1] Constantinides, A.G., “Spectral Transformations for Digital Filters,” IEEE
Proceedings, Vol. 117, No. 8, pp. 1585-1590, August 1970.

[2] Nowrouzian, B., and A.G. Constantinides, “Prototype Reference Transfer
Function Parameters in the Discrete-Time Frequency Transformations,”
Proceedings 33rd Midwest Symposium on Circuits and Systems, Calgary,
Canada, Vol. 2, pp. 1078-1082, August 1990.

[3] Feyh, G., J.C. Franchitti, and C.T. Mullis, “Allpass Filter Interpolation
and Frequency Transformation Problem,“ Proceedings 20th Asilomar
Conference on Signals, Systems and Computers, Pacific Grove, California,
pp. 164-168, November 1986.

[4] Krukowski, A., G.D. Cain, and I. Kale, “Custom Designed High-Order
Frequency Transformations for IIR Filters,” 38th Midwest Symposium on
Circuits and Systems (MWSCAS’95), Rio de Janeiro, Brazil, August 1995.

A-3

A Bibliography

A-4

B

Examples

Use this list to find examples in the documentation.

B Examples

Using FDATool
“Example — Design a Notch Filter” on page 4-3
“Example — Quantize Double-Precision Filters” on page 4-17
“Example — Change the Quantization Properties of Quantized Filters”
on page 4-18
“Example — Noise Method Applied to a Filter” on page 4-22
“Example — Scale an SOS Filter” on page 4-30
“Example — Reorder an SOS Filter” on page 4-39
“Example — View the Sections of SOS Filters” on page 4-46
“Example — Export Coefficients or Objects to the Workspace” on page 4-52
“Example — Exporting as a Text File” on page 4-53
“Example — Exporting as a MAT-File” on page 4-54
“Example — Import XILINX .COE Files” on page 4-55
“Example — Design a Fractional Rate Convertor” on page 4-74
“Example — Design a CIC Decimator for 8 Bit Input/Output Data” on
page 4-77
“Example — Realize a Filter Using FDATool” on page 4-86

Adaptive Filters
“Examples of Adaptive Filters That Use LMS Algorithms” on page 5-15
“Example of Adaptive Filter That Uses RLS Algorithm” on page 5-36

B-2

Index

IndexA
AccumFracLength 7-20
AccumWordLength 7-20
adaptfilt object

apply to data 5-14

adaptfilt object properties
Algorithm 7-108
AvgFactor 7-108
BkwdPredErrorPower 7-108
BkwdPrediction 7-108
Blocklength 7-111
Coefficients 7-111
ConversionFactor 7-111
Delay 7-111
DesiredSignalStates 7-111
EpsilonStates 7-111
ErrorStates 7-111
FFTCoefficients 7-111
FFTStates 7-112
FilteredInputStates 7-112
FilterLength 7-112
ForgettingFactor 7-112
FwdPredErrorPower 7-112
FwdPrediction 7-112
InitFactor 7-112
InvCov 7-113
KalmanGain 7-113
KalmanGainStates 7-113
Offset 7-113
OffsetCov 7-113
Power 7-113
ProjectionOrder 7-114
ReflectionCoeffsStep 7-114
ResetBeforeFiltering 7-114
SecondaryPathCoeffs 7-114
SecondaryPathEstimate 7-114
SecondaryPathStates 7-114
SqrtInvCov 7-115
States 7-115
StepSize 7-115
SwBlockLength 7-115

adaptive filter object 5-14
See also adaptfilt object

adaptive filter properties
SqrtCov 7-114

Index-1

Index

Algorithm 7-108
antisymmetricfir 7-54
arithmetic

about fixed-point 7-20
arithmetic property

double 7-21
fixed 7-23
single 7-22

AvgFactor 7-108

B
BkwdPredErrorPower 7-108
BkwdPrediction 7-108
Blocklength 7-111

C
changing quantized filter properties in

FDATool 4-18
CoeffAutoScale 7-36
CoeffFracLength 7-40
coefficients

exporting 4-81
Coefficients 7-111
CoeffWordLength 7-41
context-sensitive help 4-89
controls

FDATool 4-8
ConversionFactor 7-111
convert filters 7-66
converting filter structures in FDATool 4-25

D
Delay 7-111

DenAccumFracLength 7-41
DenFracLength 7-42
Denominator 7-42
DenProdFracLength 7-42
DenStateFracLength 7-43
DenStateWordLength 7-43
design methods 1-6

customize 1-8
designing fixed-point multirate filters 4-79
designing multirate filters 4-79
DesiredSignalStates 7-111
df1 7-47
df1t 7-49
df2 7-50
df2t 7-52
dfilt properties

arithmetic 7-20
direct-form I 7-48

transposed 7-49
direct-form II 7-50

transposed 7-52
double

property value 7-21
dynamic properties 7-5

E
EpsilonStates 7-111
ErrorStates 7-111
exporting individual phase coefficients of a

polyphase filter 4-81
exporting quantized filters in FDATool 4-52

Index-2

Index

F
FDATool

about 4-1
about importing and exporting filters 4-50
about quantization mode 4-6
apply option 4-8
changing quantized filter properties 4-18
context-sensitive help 4-89
controls 4-8
convert structure option 4-25
converting filter structures 4-25
exporting quantized filters 4-52
frequency point to transform 4-61
getting help 4-89
import filter dialog box 4-51
importable filter structures 4-50
importing filters 4-51
original filter type 4-57
quantized filter properties 4-9
quantizing filters 4-9
quantizing reference filters 4-17
set quantization parameters dialog 4-9
setting properties 4-9
specify desired frequency location 4-62
switching to quantization mode 4-6
transform filters in FDATool 4-63
transformed filter type 4-62
user options 4-8

FFTCoefficients 7-111
FFTStates 7-112
filter algorithm 1-6

choosing 1-6
filter conversions 7-67
filter data 1-10
filter design

adaptive 5-1
customize algorithm 1-8
filter analysis 1-9
Filter Object 1-8
flow chart

flow diagram 1-2
multirate filters in FDATool 4-67
process 1-2
single-rate filters in FDATool 4-2
specification 1-4
Specifications Object 1-4

Filter Design and Analysis Tool 4-1
See also FDATool

filter design GUI
context-sensitive help 4-89
help about 4-89

filter design parameters 1-4
filter response 1-4
filter sections

specifying 7-67
filter structures

about 7-43
all-pass lattice 7-59
direct-form antisymmetric FIR 7-54
direct-form FIR 7-56
direct-form I 7-47
direct-form I SOS IIR 7-48
direct-form I transposed 7-49
direct-form I transposed IIR 7-49
direct-form II 7-50
direct-form II IIR 7-50
direct-form II SOS IIR 7-51
direct-form II transposed 7-52
direct-form II transposed IIR 7-52
direct-form symmetric FIR 7-64
direct-form transposed FIR 7-57
FIR transposed 7-57
fixed-point 7-46
lattice allpass 7-59
lattice AR 7-61
lattice ARMA 7-63
lattice autoregressive moving average 7-63
lattice moving average maximum phase 7-60
lattice moving average minimum phase 7-61

FilteredInputStates 7-112

Index-3

Index

filterinternals
fixed-point filter 7-43
multirate filter 7-122

FilterLength 7-112
filters

converting 7-66
exporting as MAT-file 4-54
exporting as text file 4-53
exporting from FDATool 4-52
FIR 7-43
getting filter coefficients after exporting 4-53
importing and exporting 4-50
importing into FDATool 4-51
lattice 7-43
state-space 7-43

filters, export as MAT-file 4-54
FilterStructure property 7-43
finite impulse response

antisymmetric 7-54
symmetric 7-64

fir 7-56
FIR filters 7-43
firt 7-57
fixed

arithmetic property value 7-23
fixed-point filter properties

AccumFracLength 7-20
AccumWordLength 7-20
Arithmetic 7-20
CastBeforeSum 7-34
CoeffAutoScale 7-36
CoeffFracLength 7-40
CoeffWordLength 7-41
DenAccumFracLength 7-41
DenFracLength 7-42
Denominator 7-42
DenProdFracLength 7-42
DenStateFracLength 7-43
DenStateWordLength 7-43
FilterStructure 7-43

fixed-point filter states 7-96
fixed-point filter structures 7-46
fixed-point filters

dynamic properties 7-5
fixed-point multirate filters 4-79
ForgettingFactor 7-112
fraction length

about 7-30
negative number of bits 7-30

frequency point to transform 4-61
function for opening FDATool 4-6
FwdPredErrorPower 7-112
FwdPrediction 7-112

G
getting filter coefficients after exporting 4-53

I
import filter dialog box in FDATool 4-51
import filter dialog box options 4-51

discrete-time filter 4-51
frequency units 4-52

import/export filters in FDATool 4-50
importing filters 4-51
importing quantized filters in FDATool 4-51
InitFactor 7-112
InvCov 7-113

K
KalmanGain 7-113
KalmanGainStates 7-113

L
latcallpass 7-59
latcmax 7-60

Index-4

Index

lattice filters
allpass 7-59
AR 7-61
ARMA 7-63
autoregressive 7-61
MA 7-61
moving average maximum phase 7-60
moving average minimum phase 7-61

latticear 7-61
latticearma 7-63
latticeca 7-60
latticema 7-61

M
multiple sections

specifying 7-67
multirate filter states 7-131
multirate filters

designing 4-79

N
negative fraction length

interpret 7-30

O
object properties

AccumWordLength 7-20
Offset 7-113
OffsetCov 7-113
opening FDATool

function for 4-6
options

FDATool 4-8
original filter type 4-57

P
PersistentMemory 7-114

Power 7-113
precision 7-31
ProjectionOrder 7-114
properties

dynamic 7-5
FilterStructure 7-43
ScaleValues 7-84

Q
quantization mode in FDATool 4-6
quantized filter properties

changing in FDATool 4-18
quantized filters

architecture 7-43
direct-form FIR 7-56
direct-form FIR transposed 7-57
direct-form symmetric FIR 7-64
finite impulse response 7-57
lattice allpass 7-59
lattice AR 7-61
lattice ARMA 7-63
lattice coupled-allpass 7-59
lattice MA maximum phase 7-60
lattice MA minimum phase 7-61
reference filter 7-64
scaling 7-84
specifying 7-64
specifying coefficients for multiple

sections 7-67
structures 7-43
symmetric FIR 7-54

quantized filters properties
ScaleValues 7-84

quantizing filters in FDATool 4-17

R
realize data 1-10

Index-5

Index

reference coefficients
specifying 7-64

ReflectionCoeffs 7-114
ReflectionCoeffsStep 7-114
represent numeric data 7-30
ResetBeforeFiltering

(PersistentMemory) 7-114

S
ScaleValues property 7-84

interpreting 7-85
scaling

implementing for quantized filters 7-85
quantized filters 7-84

second-order sections
normalizing 7-67

SecondaryPathCoeffs 7-114
SecondaryPathEstimate 7-114
SecondaryPathStates 7-114
set quantization parameters dialog 4-9
setting filter properties in FDATool 4-9
single

property value 7-22
specifying desired frequency location 4-62
SqrtCov 7-114
SqrtInvCov 7-115

starting FDATool 4-6
States 7-115
states, fixed-point filter 7-96
states, multirate filter 7-131
StepSize 7-115
SwBlockLength 7-115
symmetricfir 7-64

T
transform filter

frequency point to transform 4-61
original filter type 4-57
specify desired frequency location 4-62
transformed filter type 4-62

transformed filter type 4-62

U
using adaptfilt objects 5-14
using FDATool 4-51

W
word length

about 7-30

Index-6

	toc
	Designing a Filter — Process Overview
	Process Flow Diagram and Filter Design Methodology
	Exploring the Process Flow Diagram
	Selecting a Response
	Selecting a Specification
	Selecting an Algorithm
	Customizing the Algorithm
	Designing the Filter
	Design Analysis
	Realize or Apply the Filter to Input Data

	Using the Filterbuilder GUI
	The Graphical Interface to Fdesign
	Introduction to Filterbuilder
	Filterbuilder Design Process
	Select a Response
	Select a Specification
	Select an Algorithm
	Customize the Algorithm
	Analyze the Design
	Realize or Apply the Filter to Input Data

	Designing a FIR Filter Using filterbuilder
	FIR Filter Design
	Example – Using Filterbuilder to Design a Finite Impulse Respons

	Digital Frequency Transformations
	Details and Methodology
	Overview of Transformations
	Selecting Features Subject to Transformation
	Mapping from Prototype Filter to Target Filter
	Summary of Frequency Transformations
	Advantages
	Disadvantages

	Frequency Transformations for Real Filters
	Overview
	Real Frequency Shift
	Real Lowpass to Real Lowpass
	Real Lowpass to Real Highpass
	Real Lowpass to Real Bandpass
	Real Lowpass to Real Bandstop
	Real Lowpass to Real Multiband
	Real Lowpass to Real Multipoint

	Frequency Transformations for Complex Filters
	Overview
	Complex Frequency Shift
	Real Lowpass to Complex Bandpass
	Real Lowpass to Complex Bandstop
	Real Lowpass to Complex Multiband
	Real Lowpass to Complex Multipoint
	Complex Bandpass to Complex Bandpass

	Using FDATool with Filter Design Toolbox Software
	Designing Advanced Filters in FDATool
	Overview of FDATool Features
	Using FDATool with Filter Design Toolbox Software
	Example — Design a Notch Filter

	Switching FDATool to Quantization Mode
	Quantizing Filters in the Filter Design and Analysis Tool
	Setting Quantization Parameters
	Coefficients Options
	Input/Output Options
	Filter Internals Options
	Filter Internals Options for CIC Filters
	Example — Quantize Double-Precision Filters
	Example — Change the Quantization Properties of Quantized Filter

	Analyzing Filters with a Noise-Based Method
	Using the Magnitude Response Estimate Method
	Example — Noise Method Applied to a Filter
	To Use Noise-Based Analysis in FDATool
	To View the Noise Power Spectrum
	To Change Your Noise Analysis Parameters

	Comparing the Estimated and Theoretical Magnitude Responses
	Choosing Quantized Filter Structures
	Converting the Structure of a Quantized Filter
	Converting Filters to Second-Order Sections Form
	To View Filter Structures in FDATool

	Scaling Second-Order Section Filters
	Using the Reordering and Scaling Second-Order Sections Dialog Bo
	Example — Scale an SOS Filter

	Reordering the Sections of Second-Order Section Filters
	Switching FDATool to Reorder Filters
	Example — Reorder an SOS Filter
	Use Least Selective to Most Selective Section Reordering

	Viewing SOS Filter Sections
	Using the SOS View Dialog Box
	Example — View the Sections of SOS Filters

	Importing and Exporting Quantized Filters
	Overview and Structures
	Example — Import Quantized Filters
	To Export Quantized Filters
	Example — Export Coefficients or Objects to the Workspace
	Getting Filter Coefficients After Exporting
	Example — Exporting as a Text File
	Example — Exporting as a MAT-File

	Importing XILINX Coefficient (.COE) Files
	Example — Import XILINX .COE Files

	Transforming Filters
	FDATool Filter Transformation Capabilities
	Original Filter Type
	Frequency Point to Transform
	Transformed Filter Type
	Specify Desired Frequency Location
	Example — Transform Filters

	Designing Multirate Filters in FDATool
	Introduction
	Switching FDATool to Multirate Filter Design Mode
	Controls on the Multirate Design Panel
	Example — Design a Fractional Rate Convertor
	Example — Design a CIC Decimator for 8 Bit Input/Output Data

	Quantizing Multirate Filters
	To Quantize and Configure Multirate Filters
	Input/Output
	Filter Internals

	Exporting the Individual Phase Coefficients of a Polyphase Filte
	Exporting the Polyphase Filter to an Object
	Using polyphase() to Create a Matrix of Coefficients

	Realizing Filters as Simulink Subsystem Blocks
	Introduction
	About the Realize Model Panel in FDATool
	Model Options
	Optimization Options
	Example — Realize a Filter Using FDATool
	Supported Filter Structures

	Getting Help for FDATool
	The What’s This? Option
	Additional Help for FDATool

	Adaptive Filters
	Introducing Adaptive Filtering
	Overview of Adaptive Filters and Applications
	Adaptive Filtering Methodology
	Choosing an Adaptive Filter
	System Identification
	Inverse System Identification
	Noise or Interference Cancellation
	Prediction

	Adaptive Filters in Filter Design Toolbox Software
	Overview of Adaptive Filtering in Filter Design Toolbox Software
	Algorithms
	Recursive Least Squares (RLS) Based FIR Adaptive Filters
	Affine Projection (AP) FIR Adaptive Filters

	Using Adaptive Filter Objects

	Examples of Adaptive Filters That Use LMS Algorithms
	LMS Methods Available in Filter Design Toolbox Software
	adaptfilt.lms Example — System Identification
	adaptfilt.nlms Example — System Identification
	adaptfilt.sd Example — Noise Cancellation
	adaptfilt.se Example — Noise Cancellation
	adaptfilt.ss Example — Noise Cancellation

	Example of Adaptive Filter That Uses RLS Algorithm
	Introduction and Comparison to the LMS Algorithm
	adaptfilt.rls Example — Inverse System Identification

	Selected Bibliography

	Using Integers and FIR Filters with Filter Design Toolbox
	Review of Fixed-Point Numbers
	Terminology of Fixed-Point Numbers

	Integers and Fixed-Point Filters
	Example Filter Coefficients
	Building the FIR Filter
	Setting Filter Parameters to Work with Integers
	Creating a Test Signal for the Filter
	Filtering the Test Signal
	Truncating the Output WordLength
	Scaling the Output

	Using the set2int Method
	Setting Filter Parameters to Work with Integers
	Reinterpreting the Output

	Reference for the Properties of Filter Objects
	Fixed-Point Filter Properties
	Overview of Fixed-Point Filters
	Fixed-Point Objects and Filters
	Summary — Fixed-Point Filter Properties
	Dynamic Properties

	Property Details for Fixed-Point Filters
	AccumFracLength
	AccumWordLength
	Arithmetic
	CastBeforeSum
	CoeffAutoScale
	CoeffFracLength
	CoeffWordLength
	DenAccumFracLength
	DenFracLength
	Denominator
	DenProdFracLength
	DenStateFracLength
	DenStateWordLength
	FilterInternals
	FilterStructure
	Gain
	InputFracLength
	InputWordLength
	Ladder
	LadderAccumFracLength
	LadderFracLength
	Lattice
	LatticeAccumFracLength
	LatticeFracLength
	MultiplicandFracLength
	MultiplicandWordLength
	NumAccumFracLength
	Numerator
	NumFracLength
	NumProdFracLength
	NumStateFracLength
	NumStateWordLength
	OutputFracLength
	OutputMode
	OutputWordLength
	OverflowMode
	ProductFracLength
	ProductMode
	ProductWordLength
	PersistentMemory
	RoundMode
	ScaleValueFracLength
	ScaleValues
	Signed
	SosMatrix
	SectionInputAutoScale
	SectionInputFracLength
	SectionInputWordLength
	SectionOutputAutoScale
	SectionOutputFracLength
	SectionOutputWordLength
	StateAutoScale
	StateFracLength
	States
	StateWordLength
	TapSumFracLength
	TapSumMode
	TapSumWordLength

	Adaptive Filter Properties
	Property Summaries
	Property Details for Adaptive Filter Properties
	Algorithm
	AvgFactor
	BkwdPredErrorPower
	BkwdPrediction
	Blocklength
	Coefficients
	ConversionFactor
	Delay
	DesiredSignalStates
	EpsilonStates
	ErrorStates
	FFTCoefficients
	FFTStates
	FilteredInputStates
	FilterLength
	ForgettingFactor
	FwdPredErrorPower
	FwdPrediction
	InitFactor
	InvCov
	KalmanGain
	KalmanGainStates
	Leakage
	OffsetCov
	Offset
	Power
	ProjectionOrder
	ReflectionCoeffs
	ReflectionCoeffsStep
	PersistentMemory
	SecondaryPathCoeffs
	SecondaryPathEstimate
	SecondaryPathStates
	SqrtCov
	SqrtInvCov
	States
	StepSize
	SwBlockLength

	Multirate Filter Properties
	Property Summaries
	Property Details for Multirate Filter Properties
	BitsPerSection
	BlockLength
	DecimationFactor
	DifferentialDelay
	FilterInternals
	FilterStructure
	InputOffset
	InterpolationFactor
	NumberOfSections
	OverflowMode
	PolyphaseAccum
	PersistentMemory
	RateChangeFactors
	States

	Bibliography
	Advanced Filters
	Adaptive Filters
	Multirate Filters
	Frequency Transformations

	Examples
	Using FDATool
	Adaptive Filters

	Index

	tables
	Selecting and Configuring Your Filter
	Designing Your Filter
	Least Mean Squares (LMS) Based FIR Adaptive Filters
	FIR Adaptive Filters in the Frequency Domain (FD)
	Lattice-Based (L) FIR Adaptive Filters

